
Industry Foundation Classes - Release 2.0

Specifications Volume 2

IFC Object Model Guide

Final Release - 15-March-99

International Alliance for Interoperability
Enabling Interoperability in the AEC/FM Industry

.

Industry Foundation Classes - Release 2.0

Specifications Volume 2

IFC Object Model Guide

Enabling Interoperability in the AEC/FM Industry

Copyright  1996-99 - International Alliance of Interoperability (IAI)

Mailing address: 2960 Chain Bridge Road - Suite 143
Oakton, Virginia 22124

Email address: IAI@Interoperability.com

Web Address: www.Interoperability.com

All rights reserved. No part of the contents of this document may be reproduced or
transmitted in any form or by any means without the written permission of the
copyright holder (IAI).

Document Editor

Editor Richard See (primary) / Schema owners (secondary)
Development committee Specification Task Force

Document Control

Project reference IFC Release 2.0
Document reference IFC Object Model Guide
Document version Final for this release
Release date 15-Mar-99
Status Released for implementation
Distribution IAI Member Companies
Distribution format PDF file

Revisions
Rev. Person Date Description
Alpha Richard See 10-Aug-98 Alpha release
Beta Richard See 10-Jan-99 Beta release
Final Richard See 15-Mar-99 Final release

Volume 2 - IFC Object Model Guide IFC Release 2.0
Table of Contents Page i

Copyright  International Alliance for Interoperability - 1996-1999

Contents
1. INTRODUCTION, SCOPE AND ASSUMPTIONS... 1

1.1. PURPOSE OF THESE DOCUMENTS ..1
1.2. IFC RELEASE DOCUMENT SUITE ...1
1.3. SCOPE ...2
1.4. ASSUMPTIONS AND ABBREVIATIONS ..5
1.5. INTERNATIONAL ALLIANCE FOR INTEROPERABILITY (IAI) ...6

2. OBJECT MODEL ARCHITECTURE... 7
2.1. IFC MODEL ARCHITECTURE PRINCIPLES ...7
2.2. MODEL MODULES DEFINED IN EACH LAYER ..9
2.3. RESOURCE LAYER ..10
2.4. CORE LAYER ..10
2.5. INTEROPERABILITY LAYER ...12
2.6. DOMAIN/APPLICATIONS LAYER ..13

3. OBJECT MODEL OVERVIEW ..15
3.1. MODEL SCOPE ...16
3.2. RESOURCE LAYER ..26
3.3. CORE LAYER ..29
3.4. INTEROPERABILITY LAYER ...32
3.5. DOMAIN/APPLICATIONS MODEL LAYER ..35

4. KEY OBJECT MODEL CONCEPTS ...39
4.1. SPECIALIZED VIEWS OF THE IFC MODEL ...39
4.2. MULTI-FUNCTIONAL ELEMENTS AND SYSTEMS ...40
4.3. CAPTURING DESIGN INTENT AND DESIGN CONSTRAINTS ..40
4.4. RELATIONSHIPS BETWEEN OBJECTS..41
4.5. IFC MODEL EXTENSION ..42

5. GUIDE TO THE RESOURCE LAYER ...44
5.1. IFCACTORRESOURCE ...44
5.2. IFCCLASSIFICATIONRESOURCE ...50
5.3. IFCCOSTRESOURCE ...52
5.4. IFCDATETIMERESOURCE ..57
5.5. IFCDOCUMENTRESOURCE...60
5.6. IFCGEOMETRYRESOURCE...61
5.7. IFCMATERIALRESOURCE...65
5.8. IFCMEASURE RESOURCE ..66
5.9. IFCPROPERTYRESOURCE ...69
5.10. IFCREPRESENTATIONRESOURCE...70
5.11. IFCUTILITYRESOURCE ..70

6. GUIDE TO THE CORE LAYER ...73
6.1. IFCKERNEL...73
6.2. IFCCONTROLEXTENSION ...81
6.3. IFCMODELINGAIDEXTENSION ..82
6.4. IFCPROCESSEXTENSION ...84
6.5. IFCPRODUCTEXTENSION ...85
6.6. IFCPROJECTMGMTEXTENSION ..85

7. GUIDE TO THE INTEROPERABILITY LAYER ...87
7.1. IFCSHAREDBLDGELEMENTS ..87
7.2. IFCSHAREDBLDGSERVICEELEMENTS...87
7.3. IFCSHAREDSPATIALELEMENTS..88

8. GUIDE TO THE DOMAIN/APPLICATION MODELS LAYER ..89
8.1. IFCARCHITECTUREDOMAIN..89
8.2. IFCCONSTRUCTIONMGMTDOMAIN ...92
8.3. IFCFACILITIESMGMTDOMAIN ...92
8.4. IFCHVACDOMAIN ..93

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page ii Table of Contents

Copyright  International Alliance for Interoperability - 1996-1999

Volume 2 - IFC Object Model Guide IFC Release 2.0
Introduction, Scope and Assumptions Page 1

Copyright  International Alliance for Interoperability - 1996-1999

1. Introduction, Scope and Assumptions

1.1. Purpose of these documents
The purpose of this document suite is to provide a detailed specification of the Industry Foundation Classes
(IFC) as defined by the Industry Alliance for Interoperability (IAI). The intended audience is the IAI
membership, industry domain experts, and software developers interested in implementing IFC.

1.2. IFC Release Document Suite
IFC will be documented for two readers. The AEC professional and the software profession serving the AEC
industry. Documents in this release include:

An Introduction to IAI and IFC
The "An Introduction to IAI and IFC," as the name
implies, provides AEC/FM industry professionals
with an introduction to the organization, including
its mission and organization. It also introduces the
shared project model concept, end user benefits in
using IFC compliant applications and summarizes
the AEC Industry processes that are supported by
this release of IFC. Finally, it provides a preview of
what will be added in future releases.

IFC Specification Development Guide
The "IFC Specification Development Guide"
defines the process used by the IAI in developing
IFC. It also provides various references
supporting parts of this process such as
development of process diagrams, development of
detailed requirement definitions and
reading/creating EXPRESS (data model)
definitions and EXPRESS-G diagrams.

IFC Object Model Architecture Guide
The "IFC Object Model Architecture Guide" defines the architecture used in the design of the IFC object
model. This architecture is modular and layered which allows independent development and evolution of
sub-schemata. This document is written for software developers who will develop applications supporting
IFC.

Volume 1: AEC/FM Processes Supported by IFC
THIS DOCUMENT -- The "AEC/FM Processes Supported by IFC" volume documents the AEC/FM industry
processes that the IFC Project Model in this release is designed to support. Therefore, this document
effectively defines the scope of AEC project information included in this Release. Volumes 2 and 3 structure
this information as software objects in AEC software. Note that this IFC release is limited to the information
content of the foundation classes defined. Behavior for these objects, and thus the implementation of
software that will support these AEC industry processes, will be defined by the implementing software
vendors.

Volume 2: IFC Object Model Guide
The "IFC Object Model Guide" defines model design and use concepts for IFC object model. These key
concepts include: an overview of model architecture, capturing design intent, sharing semantic relationships,
model extension by application developers. It also describes some implementation strategies such as file

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 2 Introduction, Scope and Assumptions

Copyright  International Alliance for Interoperability - 1996-1999

based model exchange, Client-Server architectures and runtime interoperability supported through standard
software interfaces of the IFC model. This includes an overview and example of the physical file format for
file based model exchange.

Volume 3: IFC Object Model Reference
The "IFC Object Model Reference" provides detailed definitions for each of the classes and data types
defined in the IFC object model. This includes all of the information required by the AEC processes defined
in volume 1, structured in an information model detailing object class data, relationships, standard interfaces,
type definitions and geometry schema use for shape representation. Additionally, it provides a data model
view defined in EXPRESS and a standard interfaces view defined in IDL. Each of these code sets will be
used by application developers as input into Computer Aided Software Engineering (CASE) tools to semi-
automate development of applications intended to support IFC. Finally, a on-line version of this information is
provided in an HTML document set that is cross linked for easy access to information related to or supporting
a particular class or data type.

Volume 4: IFC Software Implementation Certification Guide
The "IFC Software implementation Certification Guide" provides detailed information about conformance
certifications issues and the methodology that will be used by the IAI to certify applications for multiple levels
of IFC conformance. This includes an overview of the concepts for conformance assessment and
certification, definition of various "Exchange Set" subsets of the IFC model for which certification can be
assessed and an overview of the testing suites that will be used for certification testing.

Volume 5: IFC Software Implementation Guide
The "IFC Software implementation Guide" provides detailed information addressing the issues of
implementing the IFC object model in software products. In this release, it's content is limited to the topics of
implementing property sets (previously called "Pset Guide") and the differences from the previous release
(previously called "Migration Guide"). Over the next couple of IFC releases, many more topics will be
addressed.

1.3. Scope

1.3.1. Scope for IFC Release 2.0
Enabling interoperability between applications by different software vendors is the ultimate goal of the IAI.
This is a very ambitious goal and will be achieved through a series of incremental steps.

In general, the IAI is focused on providing three things in IFC:

1. Standard definitions for the attributes associated with entities comprising an AEC/FM project model
(objects)

2. Structure and relationships between these entities from the point of view of various AEC/FM
professionals

3. Standard formats/protocols for two methods of sharing this information:
§ exchange via a standard file format
§ exchange via standard software interfaces

It is important to note that the software interface specifications in this release will not include any application-
specific behavior. Instead, these interfaces will be limited to get and set methods for the attribute and
relationship information defined in the data model.

Release 1.5 of IFC provided the infrastructure that supports this release, plus reasonable models for
architecture, some HVAC, estimating, scheduling and Facilities Management. This release will build on these
foundations and extend the model in several areas.

The scope for this release of the IFC Specifications is limited to:

Volume 2 - IFC Object Model Guide IFC Release 2.0
Introduction, Scope and Assumptions Page 3

Copyright  International Alliance for Interoperability - 1996-1999

1. Six AEC/FM domains - Architecture, HVAC engineering, codes and standards, cost estimating,
facilities management and simulation

2. Only a specific subset of the processes in these domains (defined in Volume 1 of these
specifications).

These domains and processes are:

Architectural Design
§ Building 'shell' design
§ Building 'core' design
 Stair design
 Public toilet design
§ Roof design
§ Fire Compartmentation

HVAC Engineering
§ HVAC Duct System Design
§ HVAC Piping System Design
§ Pathway Design and Coordination
§ Building Heating and Cooling Load Calculation

Codes and Standards
§ Commercial and Residential Energy Code Compliance Checking

Cost Estimating
§ Cost Estimating
 Identify Objects
 Identify Tasks Needed to Install Objects
 Identify Resources Needed to Perform Tasks
 Quantify
 Costing and Cost Summarization

Facilities Management
§ Property Management
 Enabling the use of IFC objects in property management
 Grouping IFC objects
 Linking the maintenance objects to the IFC objects
§ Occupancy Planning
§ Design of Workstations
§ Floor Layout of Workstations for an Open Office

Simulation
§ Photo Accurate Visualization

All AEC domains
§ Document references (from model to document only)

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 4 Introduction, Scope and Assumptions

Copyright  International Alliance for Interoperability - 1996-1999

1.3.2. Scope of this document
This document serves as a guide to the IFC Object Model. This guide is intended to provide an
understanding of the key concepts, background research, and principles used in the designing of IFC. It is
written for two different readers. The first reader is a software developer, to aid his understanding of how
AEC industry concepts have been modeled in IFC. The second reader is an end user, to ais his
understanding of how to use IFC to build effective, useful project models.

This document also provides an explanation of the rationale behind the layered IFC models architecture.
This layered architecture provides a framework for the evolution of the IFC model in future releases while
providing stability for implementers of this release.

This information is presented in 8 sections:

1. Introduction, Scope and Assumptions

 Provides the reader with an introduction to the set of five volumes comprising this release of the IFC
Specifications. This section outlines the information included in this document versus related
documents. It will also define the scope for this release and assumptions about knowledge of the
reader.

2. IFC Model Architecture
This section explains the rationale behind the layered IFC model architecture that will allow IFC to
evolve in future releases.

3. IFC Model Overview
This section gives an overview of all the modules in the IFC model and can be used as a quick
reference to find particular entity definitions.

4. Key IFC Model Concepts
This section presents several key concepts used in IFC which will enable much more intelligent AEC
applications and which allow IFC to be extended -- in future releases, by developers and by end
users. It also includes descriptions of and the rationale for using different model views - such as the
EXPRESS data model view and the CORBA Interface Definition Language (IDL) view.

5. Guide to the Resources Layer
This section provides a guide to concepts in the Independent Resources Layer of the IFC Model.

6. Guide to the Core Layer
This section provides a guide to concepts in the Core Layer of the IFC Model.

7. Guide to the Interoperability Layer
This section provides a guide to concepts in the Interoperability Layer of the IFC Model.

8. Guide to the Domain/Application Models Layer
This section provides a guide to concepts in the Domain Extensions Layer of the IFC Model.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Introduction, Scope and Assumptions Page 5

Copyright  International Alliance for Interoperability - 1996-1999

1.4. Assumptions and Abbreviations
This document assumes the reader is reasonably familiar with the following:

• AEC/FM market and project terminology

• Software industry terminology

• Concepts and terminology associated with object oriented software

The following abbreviations are used throughout the IFC Specifications:

• AEC/FM Architectural, Engineering, Construction and Facilities Management

• IAI Industry Alliance for Interoperability

• AP Application Protocol

• Arch Architecture

• CM Construction Management

• CORBA Common Object Request Broker Architecture

• COM Microsoft’s Component Object Model

• DCE Distributed Computing Environment

• DCOM Microsoft’s Distributed Component Object Model

• DSOM IBM’s Distributed System Object Model

• FM Facilities Management

• FTP File Transfer Protocol

• GUID Globally Unique Identifier

• HVAC Heating, Ventilating and Air Conditioning

• HTTP Hypertext Transport Protocol

• IAI International Alliance for Interoperability

• IDL Interface Definition Language

• IFC Industry Foundation Classes

• ISO International Standards Organization

• FM Facilities Management

• MIDL Microsoft’s Interface Definition Language

• ODL Microsoft’s Object Description Language

• OMG Object Management Group

• ORB Object Request Broker

• OSF Open Software Foundation

• RPC Remote Procedure Call

• SOM IBM’s System Object Model

• STEP Standard for the Exchange of Product Model Data

• TCP/IP Transmission Control Protocol/Internet Protocol

• TQM Total Quality Management

• URL Universal Resource Location

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 6 Introduction, Scope and Assumptions

Copyright  International Alliance for Interoperability - 1996-1999

1.5. International Alliance for Interoperability (IAI)
The IAI is a ‘not for profit’ industry alliance of companies. Its membership is comprised of visionary
companies representing all sectors of the AEC industry worldwide.

The IAI was first formed in September of 1995, by 12 industry leading companies who, during the previous
year had worked together to develop proof of concept prototypes demonstrating the viability of interoperability
between AEC software applications. This demonstration was shown publicly at the AEC Systems ’95
conference in Atlanta, Georgia. This is the third release of IFC since that time. There are currently 50
organizations implementing software to support IFC, a number that is growing quite rapidly now.

As of this printing, the IAI includes 9 international chapters with hundreds of member companies in the
following regions:

• Australasian countries
• French speaking region of Europe
• German speaking region of Europe
• Japan
• Korea
• Nordic countries of Europe
• North America
• Singapore
• United Kingdom

The IAI stated Vision, Mission and Values can be summarized as:

VISION
Enabling Interoperability in the A/E/C/FM Industry

MISSION
To define, promote and publish specifications for the Industry Foundation Classes (IFC) as a basis
for information sharing through the project life cycle, globally, across disciplines and technical
applications.

VALUES

• Not for profit industry organization
• Action oriented (Alliance v. Association)
• Consensus based decision making
• Incremental delivery (rather than prolonged study)
• Global solution
• Industry to define IFC
• IFC to be “open” (for implementation/use by all software vendors)
• Design for IFC to be extensible
• IFC will evolve over time
• Membership open to any company working in construction industry

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Architecture Page 7

Copyright  International Alliance for Interoperability - 1996-1999

2. Object Model Architecture
This subsection describes a series of concepts used in the development of the IFC Object Model. It is
important to read this section before attempting to understand the model structure and content. Most
elements of the model are driven from one or more of these concepts.

2.1. IFC Model Architecture Principles
The IFC Object Model Architecture has been developed using a set of principles governing it's organization
and structure. These principles focus on basic requirements and can be summarized as:

• provide a modular structure to the model.
• provide a framework for sharing information between different disciplines within the AEC/FM industry.
• ease the continued maintenance and development of the model.
• enable information modelers to reuse model components
• enable software authors to reuse software components
• facilitate the provision of better upward compatibility between model releases

The IFC Object Model architecture provides a modular structure for the development of model components,
the 'model schemas'. There are four conceptual layers within the architecture, which use a strict referencing
hierarchy. Within each conceptual layer a set of model schemas is defined.

The first conceptual layer (shown at the bottom in Figure 1) provides Resource classes used by classes in the
higher levels. The second conceptual layer provides a Core project model. This Core contains the Kernel
and several Core Extensions. The third conceptual layer provides a set of modules defining concepts or
objects common across multiple application types or AEC industry domains. This is the Interoperability layer.
Finally, the fourth and highest layer in the IFC Object Model is the Domain/Applications Layer. It provides set
of modules tailored for specific AEC industry domain or application type. Additionally, this layer contains
specialized model 'adapters' to non-IFC domain/application models.

The architecture operates on a 'ladder principle'. At any layer, a class may reference a class at the same or
lower layer but may not reference a class from a higher layer. References within the same layer must be
designed very carefully in order to maintain modularity in the model design.

Inter-domain references at the Domain Models layer must be resolved through 'common concepts' defined in
the Interoperability layer. If possible, references between modules at the Resource layer should be avoided
in order to support the goal that each resource module is self-contained. However, there are some low level,
general purpose resources, such as measurement and identification that are referenced by many other
resources.

Ladder principle expanded:
1. Resource classes may only reference or use other Resources.
2. Core classes may reference other Core classes (subject to the limitations listed in 3) and may

reference classes within the Resource layer without limitations. Core classes may not reference or use
classes within the Interoperability or Domain/Applications layer.

3. Within the Core layer the 'ladder principle' also applies. Therefore, Kernel classes can be referenced or
used by classes in the Core Extensions but the reverse is not allowed. Kernel classes my not
reference Core Extension classes.

4. Interoperability layer classes can reference classes in the Core or Resource layers, but not in the
Domain/Applications layer.

5. Domain/Applications layer classes may reference any class in the Interoperability, Core and Resource
layers. Additionally, classes defined within custom Interoperability Adapters (interfaces to domain or
application models developed by others) may reference classes within the Interoperability layer.

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 8 Object Model Architecture

Copyright  International Alliance for Interoperability - 1996-1999

Interoperability Modules

U
se

Extension Modules

Domain/Application Modules

Kernel
C

o
re

 L
ay

er
R

es
o

u
rc

e
L

ay
er

D
o

m
ai

n
/A

p
p

s
L

ay
er

Resource Modules

T
yp

eO
f

U
se

U
se

U
se

U
se

U
se

U
se

U
se

T
yp

eO
f

T
yp

eO
f

T
yp

eO
f

U
se

U
se

In
te

ro
p

L
ay

er

External
Domain/App

Models

M
ap

Interoperability Adapter

M
ap

T
yp

eO
f

Figure 1 Layering Concept of IFC architecture

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Architecture Page 9

Copyright  International Alliance for Interoperability - 1996-1999

2.2. Model Modules defined in each Layer
As we saw in the last section, the IFC Model Architecture for Release 2.0 consists of the following four
layers. The model modules defined in each of these layers will be introduced in this section. IFC Release 2.0
includes 24 such model modules as outlined in the diagram below.

Actor
Resource

Geometry
Resource

Classifi-
cation

Resource

Material
Resource

Document
Resource

Measure
Resource

DateTime
Resource

Property
Resource

 Repre-
sentation
Resource

Utility
Resource

Kernel

Control
 Ext.

 Project
 Mgmt
 Ext.

 Product
 Ext.

Modeling
 Aid
 Ext.

Shared Building
Elements

Shared Spatial
Elements

Shared Building
Service Elements

Architecture
Domain

Hvac
Domain

Construction
Management

Domain

Facilities
Management

Domain

Cost
Resource

Process
Ext.

R
es

o
u

rc
e

L
ay

er
C

o
re

 L
ay

er
In

te
ro

p
er

ab
ili

ty
L

ay
er

D
o

m
ai

n
/A

p
p

M
o

d
el

s
L

ay
er

Figure 2 Model Modules defined in each layer

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 10 Object Model Architecture

Copyright  International Alliance for Interoperability - 1996-1999

2.3. Resource Layer
Resources form the lowest layer in IFC Model Architecture and can be used or referenced by
classes in the other layers. Resources can be characterized as general purpose or low level
concepts or objects which do not rely on any other classes in the model for their existence.
There are a few exceptions to this characterization. Classes from the Utility and Measure
Resources are used by other, higher level resource classes.

All Resources represent individual business concepts. For instance, all information concerning the concept of
cost is collected together within the cost schema, the IfcCostResource. Any classes within the Core,
Interoperability or Domain/Application layers which need to use cost will reference this resource.

Similarly, all ideas concerning geometry are collected together within the IfcGeometryResource.
Fundamental geometric entity definitions are defined in this resource. More specialized attribute driven
geometry constructs are also defined here. Geometry will be referenced by classes defined within the Core
and higher levels through the representation resource, also provided at the resource layer. However some
details within the IfcGeometryResource are hidden from classes in these higher layers. There is no
implication of choice for one of these representations coming from the resource layer, it simply provides the
definition. A Core model object may utilize several geometry entities for representation.

2.3.1. Resource schemas for R1.5
The following resource schemas were included in IFC R1.5:

• IfcUtilityResource (object identification, object history, general purpose tables)
• IfcMeasureResource (units of measure, standard measurement types, custom measurement types)
• IfcGeometryResource (attribute driven geometric representation items, explicit geometric

representation items, topological representation items, geometric models)
• IfcPropertyTypeResource (fundamental property types, property type definitions, property sets, shape

representation)
• IfcPropertyResource (extended property types: material, cost, actor, classification, time)

2.3.2. Resource schemas for R2.0
In IFC Release 2.0, many of these resources were re-organized or move to separate schemas. The
complete list of resources included in this release are:

• IfcActorResource (was part of IfcPropertyResource in R1.5)
• IfcClassificationResource (was part of IfcPropertyResource in R1.5)
• IfcCostResource (was part of IfcPropertyResource in R1.5)
• IfcDateAndTimeResource (was part of IfcPropertyResource in R1.5)
• IfcGeometricModelResource (was part of IfcGeometryResource in R1.5)
• IfcGeometryResource (largely the same as in R1.5)
• IfcMaterialResource (was part of IfcPropertyResource in R1.5)
• IfcMeasureResource (largely the same as in R1.5)
• IfcPropertyResource (was IFcPropertyTypeResource in R1.5
• IfcRepresentationResource (was part of IfcPropertyResource in R1.5)
• IfcTopologyResource (was part of IfcGeometryResource in R1.5)
• IfcUtilityResource (extended from R1.5)

2.4. Core Layer
The Core forms the next layer in IFC Model Architecture. Classes defined here can be referenced and
specialized by all classes in the Interoperability and Domain/ Application layers. The Core layer provides the
basic structure of the IFC object model and defines most abstract concepts that will be specialized by higher
layers of the IFC object model.

Actor
Resource

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Architecture Page 11

Copyright  International Alliance for Interoperability - 1996-1999

The Core includes two levels of abstraction:
1. The Kernel
2. Core Extensions

Goals for Core Model Design:
• definition of the common superset of those concepts that later can be refined and used by various

interoperability and domain models
• pre-harmonization of domain models by providing this common superset
• stable definition of the object model foundation to support upgrade compatible IFC Releases

2.4.1. Kernel
The Kernel provides all the basic concepts required for IFC models within
the scope of the current IFC Release. The Kernel also determines the model
structure and decomposition. Concepts defined in the kernel are,
necessarily, abstracted to a high level. The kernel also includes fundamental
concepts concerning the provision of objects, relationships, type definitions,
attributes and roles. The Kernel can be envisioned as a kind of Meta Model
that provides the platform for all model extensions. The constructs that form

the Kernel are very generic and are not AEC/FM specific, although they will only be used for AEC/FM
purposes due to the specialization by Core Extensions. The Kernel constructs will be included as a
mandatory part of all IFC implementations.

The Kernel is the foundation of the Core Model. Kernel classes may reference classes in the Resource layer
but may not reference those in the other parts of the Core or in higher level model layers. The use of
Resources will be facilitated by well defined interfaces within resource schemata. Thus, the design detail for
any particular resource will be hidden from referencing classes within the Kernel.

2.4.2. Core Extensions
Core Extensions, as the name implies, provide extension or specialization of
concepts defined in the Kernel. Core Extensions are therefore, the first refinement
layer for abstract Kernel constructs. More specifically, they extend Kernel
constructs for use within the AEC/FM industry. Each Core Extension is a
specialization of classes defined in the Kernel. Figure 3 shows the further
specialization of classes rooted in the IfcKernel.

Beyond this class specialization, primary relationships and roles are also defined
within the Core Extensions.

IfcObject

IfcProcess

IfcProductIfcProductExtension

IfcProcessExtension

KernelCore
Extension

IfcModelingAid

IfcDocument

IfcModelingAidExtension

IfcDocumentExtension

Kernel

Constraint
 Ext.

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 12 Object Model Architecture

Copyright  International Alliance for Interoperability - 1996-1999

Figure 3 Core Extensions from Kernel Classes

A class defined within a Core Extension may be used or referenced by classes defined in the Inteoperability
or Domain/Applications layers, but not by a class within the Kernel or in the Resource layer. References
between Core Extensions have to be defined very carefully in a way that allows the selection of a singular
Core Extension without destroying data integrity by invalid external references.

2.4.3. Core schemas extended from R1.5
The following schemas are included in the IFC R1.5 Core layer and extended in R2.0:

• IfcKernel
• IfcProductExtension
• IfcProcessExtension
• IfcModelingAidExtension
• IfcDocumentExtension

2.4.4. Core schemas for R2.0
Within the IFC Release 2.0 project scope the following core schemas are included.

• IfcConstraintExtension
• IfcProjectMgmtExtension

2.5. Interoperability Layer
 The main goal in the design of Interoperability Layer is the provision of modules
defining concepts or objects common to two or more domain/ application models.
The commonly used, 'common concept' modules enable interoperability between
different domain or application models. Introduction of this model layer is the best
example of a general purpose model design guideline, that the model should

incorporate a 'Plug-In' architecture -- allowing multiple domain or application models to be 'Plugged into' the
common IFC Core. Such a 'Plug-In' architecture will also support outsourcing the development of
domain/application models.

2.5.1. Interoperability schemas extended from R1.5
The following schemas were included in the IFC R1.5 Interoperability layer and extended in R2.0:

• IfcSharedBldgElements (all fundamental building elements shared between domains)
• IfcSharedBldgServiceElements (all fundamental building service elements shared between domains)

2.5.2. Interoperability schemas for R2.0
The following schemas were added to the Interoperability layer in R2.0:

• IfcSharedSpatialElements

2.5.3. Adapter Definitions
Although not yet used in the current IFC Release the concept of an 'adapter' is foreseen to access various
domain models, including disperse models (i.e. those defined outside the International Alliance for
Interoperability). The main requirements for Adapters are the facilitation of:

1. Direct Plug-In of IFC developed Domain Models, that is a direct reference and use of Core definitions
by the appropriate Domain Models through the provision of interoperable class definitions at the
Interoperability layer. This is currently the only applied technique.

Shared Building
Elements

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Architecture Page 13

Copyright  International Alliance for Interoperability - 1996-1999

2. Plug-In of externally developed, non harmonized, Domain Models via an Adapter that provides a
mapping mechanism down to Core and Interoperability definitions. The definition of the Adapter Plug is
in the responsibility of the Domain Model developer and is part of the Domain Model Layer.

3. Establish an inter-domain exchange mechanism above the Core to enable interoperability across
domains. This includes a container mechanism to package information. Therefore an Adapter is used
where the definition of the Adapter is the responsibility of all Domain Models sharing this Adapter Plug.

The Adapters are based on Core Extension definitions and enhance those Core Extension definitions. Those
enhancements provide common concepts for all Domain Models that might further refine these concepts. As
an example, the Building Element Socket provides the definition of a common wall, whereas the Architectural
Domain Model will enhance this common wall with its private subtypes and type definitions within Release 3.0
time frame. An Adapter Socket that is used by several Domain Models therefore provides a medium level of
interoperability through shared Adapter Socket definitions.

IFC Domain extensions that tightly couple with the Core Model such as those defined within the IFC Model
(i.e., HVAC and Architecture) do not require an additional mapping of Domain Model definitions down to Core
definitions, therefore they do not need specific Adapter.

Non-IFC harmonized models can be connected to the IFC Core Model through a mapping defined by a
specific Adapter. This methods needs to be further elaborated within the Release 3.0 time frame. For specific
high-level inter-domain exchange, that cannot be satisfied by common definitions in the Core, the Adapter
may provide a specific inter-domain mapping. This Adapter type has to be developed within Release 3.0 time
frame as well.

2.6. Domain/Applications Layer
Domain/Applications Models provide further model detail within the scope requirements
for an AEC/FM domain process or a type of application. Each is a separate model which
may use or reference any class defined in the Core and Independent Resource layers.
Examples of Domain Models are Architecture, HVAC, FM, Structural Engineering etc. A
main purpose of Domain Models is the provision of specialized type definitions that are
tailored for the use within this domain.

Part of the Domain Model definition is the definition of the Adapter Plugs if needed. Fully harmonized IFC
Domain Models will be directly plugged in the Core definitions. Domain Models which are non fully
harmonized have to provide appropriate Adapter Plug definitions in order to be enabled to use the IFC model
framework. The Adapter Sockets provide the guidelines to develop those Plugs. If inter-domain
interoperability has to be achieved that extends the common shared Core definitions, those Domain Model
developments have to be combined in order to provide an interoperable Plug.

2.6.1. Domain/Application Models extended from R1.5
The following Domain Models were included in IFC R1.5 and extended in R2.0:

• IfcArchitecture
• IfcFacilitiesMgmt

2.6.2. Domain/Application Models Added in R2.0
The following Domain Models have been added in IFC R2.0:

• IfcCostEstimatingDomain
• IfcHVACDomain

Architecture

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 14 Object Model Architecture

Copyright  International Alliance for Interoperability - 1996-1999

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Overview Page 15

Copyright  International Alliance for Interoperability - 1996-1999

3. Object Model Overview
This section will provide a high level overview of the Object Model. It summarizes the following model
modules as structured in the Model Architecture section above.

Resources layer
 1. IfcActorResource
 2. IfcClassificationResource
 3. IfcCostResource
 4. IfcDateAndTimeResource
 5. IfcDocumentResource
 6. IfcGeometryResource
 7. IfcMaterialResource
 8. IfcMeasureResource
 9. IfcPropertyResource
 10. IfcRepresentationResource
 11. IfcUtilityResource

Core Layer
 12. IfcKernel
 13. IfcConstraintExtension
 14. IfcModelingAidExtension
 15. IfcProductExtension
 16. IfcProcessExtension
 17. IfcProjectMgmtExtension

Interoperability Layer
 18. IfcSharedBldgElements
 19. IfcSharedBldgServiceElements
 20. IfcSharedSpatialElements

Domain Extensions Layer
 21. IfcArchitecture
 22. IfcConstructionMgmt
 23. IfcFacilitiesMgmt
 24. IfcHVAC

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 16 Object Model Overview

Copyright  International Alliance for Interoperability - 1996-1999

3.1. Model Scope
Although we have focused the scope of Release 2.0 to support business processes in a selected set of AEC
market domains, a large number of object types are included in the Object Model. Many of these provide the
underlying structure that will support an increasing scope of AEC industry processes in future releases. In
this release, we have the following entity counts:

Object Model Classes 290
Domain/Application model classes 39

Architecture 13
Construction Management 9
Facilities Management 11
HVAC 6

Interoperability Layer classes 40
Building Elements 18
Building ServiceElements 17
Spatial Elements 5

Core layer classes 93
Kernel 25
Controls 12
Modeling Aids 13
Products 24
Processes 9
Project Management 10

Resource layer classes 118
Actor, Classification, Cost, Document,
Materials, Properties 28
Measure, Date & Time 13
Geometry, Representation 71
Utilities 6

Dynamic Model elements
Predefined types 30

PropertySets 184

Defined Types
Enumerations 87

Defined data types 54

Select types 16

It is important to first understand the underlying structure of the model before looking at the individual
elements.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Overview Page 17

Copyright  International Alliance for Interoperability - 1996-1999

3.1.1. IFC Object Model Hierarchy
This section provides a object class inheritence overview of the complete IFC model. It also lists the schema
in which each class is defined. Detailed specifications are available for each class in the IFC Object Model
Reference. These specifications include semantic definitions (for the class, attributes and relationships),
software interfaces, inheritence information, type definitions, and geometry use definitions (for shape
representations). Classes can be located alphabetically within the schema listed below.

Inheritence level
Schema 1 2 3 4 5 6 7 8 9 10

1 IfcActorResource IfcActorRole
2 IfcActorResource IfcAddress
3 IfcUtilityResource IfcApplication
4 IfcGeometryResource IfcAttDrivenProfileDef
5 IfcGeometryResource IfcArbitraryProfileDef
6 IfcGeometryResource IfcCircleProfileDef
7 IfcGeometryResource IfcRectangleProfileDef
8 IfcGeometryResource IfcTrapeziumProfileDef
9 IfcUtilityResource IfcAuditTrail

10 IfcDateTimeResource IfcCalendarDate
11 IfcClassificationResource IfcClassification
12 IfcClassificationResource IfcClassificationList
13 IfcClassificationResource IfcClassificationNotation
14 IfcDateTimeResource IfcCoordinatedUniversalTimeOffset
15 IfcCostResource IfcCost
16 IfcCostResource IfcCostModifier
17 IfcDateTimeResource IfcDateAndTime
18 IfcMeasureResource IfcDerivedUnit
19 IfcMeasureResource IfcDerivedUnitElement
20 IfcMeasureResource IfcDimensionalExponents
21 IfcDocumentResource IfcDocumentReference
22 IfcDocumentResource IfcDocumentType
23 IfcPropertyResource IfcEnumeration
24 IfcGeometryResource IfcGeometricRepresentationItem
25 IfcGeometryResource IfcBooleanResult
26 IfcGeometryResource IfcBoundingBox
27 IfcGeometryResource IfcCompositeCurveSegment
28 IfcGeometryResource IfcCurve
29 IfcGeometryResource IfcBoundedCurve
30 IfcGeometryResource IfcCompositeCurve
31 IfcGeometryResource Ifc2DCompositeCurve
32 IfcGeometryResource IfcPolyline
33 IfcGeometryResource IfcTrimmedCurve
34 IfcGeometryResource IfcConic
35 IfcGeometryResource IfcCircle
36 IfcGeometryResource IfcEllipse
37 IfcGeometryResource IfcLine
38 IfcGeometryResource IfcDirection
39 IfcGeometryResource IfcHalfSpaceSolid
40 IfcGeometryResource IfcBoxedHalfSpace
41 IfcGeometryResource IfcPlacement
42 IfcGeometryResource IfcAxis1Placement

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 18 Object Model Overview

Copyright  International Alliance for Interoperability - 1996-1999

Inheritence level
Schema 1 2 3 4 5 6 7 8 9 10

43 IfcGeometryResource IfcAxis2Placement2D
44 IfcGeometryResource IfcAxis2Placement3D
45 IfcGeometryResource IfcPoint
46 IfcGeometryResource IfcCartesianPoint
47 IfcGeometryResource IfcPolyLoop
48 IfcGeometryResource IfcSolidModel
49 IfcGeometryResource IfcAttDrivenExtrudedSolid
50 IfcGeometryResource IfcAttDrivenClippedExtrudedSolid
51 IfcGeometryResource IfcAttDrivenRevolvedSolid
52 IfcGeometryResource IfcAttDrivenClippedRevolvedSolid
53 IfcGeometryResource IfcCsgSolid
54 IfcGeometryResource IfcManifoldSolidBrep
55 IfcGeometryResource IfcFacetedBrep
56 IfcGeometryResource IfcFacetedBrepWithVoids
57 IfcGeometryResource IfcSweptAreaSolid
58 IfcGeometryResource IfcExtrudedAreaSolid
59 IfcGeometryResource IfcAttDrivenExtrudedSegment
60 IfcGeometryResource IfcAttDrivenMorphedExtrudedSegment
61 IfcGeometryResource IfcAttDrivenTaperedExtrudedSegment
62 IfcGeometryResource IfcRevolvedAreaSolid
63 IfcGeometryResource IfcAttDrivenRevolvedSegment
64 IfcGeometryResource IfcAttDrivenMorphedRevolvedSegment
65 IfcGeometryResource IfcAttDrivenTaperedRevolvedSegment
66 IfcGeometryResource IfcSurface
67 IfcGeometryResource IfcCurveBoundedPlane
68 IfcGeometryResource IfcElementarySurface
69 IfcGeometryResource IfcPlane
70 IfcGeometryResource IfcVector
71 IfcPropertyResource IfcLibrary
72 IfcDateTimeResource IfcLocalTime
73 IfcMaterialResource IfcMaterial
74 IfcMaterialResource IfcMaterialFinish
75 IfcMaterialResource IfcMaterialLayer
76 IfcMaterialResource IfcMaterialLayerSet
77 IfcMaterialResource IfcMaterialLayerSetUsage
78 IfcMaterialResource IfcMaterialList
79 IfcMeasureResource IfcMeasureWithUnit
80 IfcMeasureResource IfcNamedUnit
81 IfcMeasureResource IfcContextDependentUnit
82 IfcMeasureResource IfcConversionBasedUnit
83 IfcMeasureResource IfcSiUnit
84 IfcClassificationResource IfcNotationFacet
85 IfcActorResource IfcOrganization
86 IfcUtilityResource IfcOwnerHistory
87 IfcActorResource IfcPerson
88 IfcActorResource IfcPersonAndOrganization
89 IfcRepresentationResource IfcProductRepresentation
90 IfcRepresentationResource IfcProductDefinitionShape
91 IfcRepresentationResource IfcProductDefinitionTopology
92 IfcPropertyResource IfcProperty
93 IfcPropertyResource IfcEnumeratedProperty
94 IfcPropertyResource IfcLibraryReference

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Overview Page 19

Copyright  International Alliance for Interoperability - 1996-1999

Inheritence level
Schema 1 2 3 4 5 6 7 8 9 10

95 IfcPropertyResource IfcObjectReference
96 IfcPropertyResource IfcPropertyList
97 IfcPropertyResource IfcSimpleProperty
98 IfcPropertyResource IfcSimplePropertyWithUnit
99 IfcRepresentationResource IfcRepresentation

100 IfcRepresentationResource IfcShapeRepresentation
101 IfcRepresentationResource IfcTopologyRepresentation
102 IfcRepresentationResource IfcRepresentationContext
103 IfcRepresentationResource IfcGeometricRepresentationContext
104 IfcKernel IfcRoot
105 IfcKernel IfcModelingAid
106 IfcModelingAidExtension IfcDesignGrid
107 IfcModelingAidExtension IfcGridAxis
108 IfcModelingAidExtension IfcGridIntersection
109 IfcModelingAidExtension IfcGridLevel
110 IfcModelingAidExtension IfcLightSource
111 IfcKernel IfcLocalPlacement
112 IfcModelingAidExtension IfcConstrainedPlacement
113 IfcModelingAidExtension IfcPhotometricOutputSpace
114 IfcModelingAidExtension IfcPlacementConstraint
115 IfcModelingAidExtension IfcConstraintRelIntersection
116 IfcModelingAidExtension IfcReferenceGeometryAid
117 IfcModelingAidExtension IfcReferenceCurve
118 IfcModelingAidExtension IfcReferencePoint
119 IfcModelingAidExtension IfcReferenceSurface
120 IfcKernel IfcObject
121 IfcKernel IfcActor
122 IfcSharedSpatialElements IfcOccupant

Owner
Lessee
Tenant
Assignee
UserDefined
NotDefined

123 IfcKernel IfcControl
124 IfcControlExtension IfcApproval
125 IfcConstructionMgmtDomain IfcCMDocPackage
126 IfcProductExtension IfcConnectionGeometry
127 IfcProductExtension IfcLineConnectionGeometry
128 IfcProductExtension IfcPointConnectionGeometry
129 IfcControlExtension IfcConstraint
130 IfcControlExtension IfcMetric
131 IfcControlExtension IfcMetricBenchmark
132 IfcControlExtension IfcObjective
133 IfcProjectMgmtExtension IfcCostElement
134 IfcProjectMgmtExtension IfcCostSchedule
135 IfcProjectMgmtExtension IfcBudget
136 IfcSharedBldgServiceElements IfcDistributionPortGeometry

RoundDuctPort
RectangularDuctPort
OvalDuctPort
RoundPipePort

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 20 Object Model Overview

Copyright  International Alliance for Interoperability - 1996-1999

Inheritence level
Schema 1 2 3 4 5 6 7 8 9 10

UserDefined
NotDefined

137 IfcFacilitiesMgmtDomain IfcFurnitureModel
138 IfcControlExtension IfcMaintenanceRecord
139 IfcControlExtension IfcMaintenanceType
140 IfcFacilitiesMgmtDomain IfcOccupancySchedule
141 IfcFacilitiesMgmtDomain IfcOccupancyScheduleElement
142 IfcProjectMgmtExtension IfcProjectOrder
143 IfcProjectMgmtExtension IfcChangeOrder
144 IfcProjectMgmtExtension IfcPurchaseOrder
145 IfcProjectMgmtExtension IfcWorkOrder
146 IfcProcessExtension IfcScheduleTimeControl
147 IfcArchitectureDomain IfcSpaceProgram

CirculationSpaceProgram
OccupiedSpaceProgram
OccupiedSpaceProgramStandard
TechnicalSpaceProgram
UserDefined
NotDefined

148 IfcProcessExtension IfcWorkPlan
149 IfcProcessExtension IfcWorkSchedule
150 IfcProcessExtension IfcWorkScheduleElement
151 IfcKernel IfcGroup
152 IfcFacilitiesMgmtDomain IfcInventory

AssetInventory
SpaceInventory
UserDefined
NotDefined

153 IfcArchitectureDomain IfcSpaceProgramGroup
154 IfcProductExtension IfcSystem
155 IfcProductExtension IfcZone
156 IfcKernel IfcProcess
157 IfcFacilitiesMgmtDomain IfcOccupancyTask
158 IfcProcessExtension IfcWorkTask
159 IfcKernel IfcProduct
160 IfcProductExtension IfcBuilding
161 IfcProductExtension IfcBuildingStorey
162 IfcConstructionMgmtDomain IfcConstructionZoneAggregationProduct
163 IfcProductExtension IfcElement
164 IfcProductExtension IfcBuildingElement
165 IfcSharedBldgElements IfcBeam
166 IfcSharedBldgElements IfcBuiltIn
167 IfcArchitectureDomain IfcBuiltInAccessory

DoorOrWindowHardware
PublicRestroom
Unspecified
UserDefined
NotDefined

168 IfcArchitectureDomain IfcCabinet
Office
Restroom
Storage

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Overview Page 21

Copyright  International Alliance for Interoperability - 1996-1999

Inheritence level
Schema 1 2 3 4 5 6 7 8 9 10

Unspecified
UserDefined
NotDefined

169 IfcArchitectureDomain IfcCounterOrShelf
CounterTop
Shelf
UserDefined
NotDefined

170 IfcSharedBldgElements IfcColumn
171 IfcSharedBldgElements IfcCovering

Ceiling
Flooring
Cladding
CoveringMillwork
UserDefined
NotDefined

172 IfcSharedBldgElements IfcCurtainWall
173 IfcSharedBldgServiceElements IfcDiscreteElement

Insulation
UserDefined
NotDefined

174 IfcSharedBldgServiceElements IfcDistributionElement
175 IfcSharedBldgServiceElements IfcDistributionControlElement
176 IfcHvacDomain IfcActuator

ElectricActuator
PneumaticActuator
HydraulicActuator
HandOperatedActuator
UserDefined
NotDefined

177 IfcHvacDomain IfcController
HvacController
UserDefined
NotDefined

178 IfcHvacDomain IfcSensor
HvacSensor
UserDefined
NotDefined

179 IfcSharedBldgServiceElements IfcDistributionFlowElement
180 IfcSharedBldgServiceElements IfcElectricalFixture

LightFixture
PowerOutlet
RadiantHeater
UserDefined
NotDefined

181 IfcSharedBldgServiceElements IfcLightFixture
182 IfcSharedBldgServiceElements IfcFlowController
183 IfcHvacDomain IfcAirTerminalBox
184 IfcHvacDomain IfcDamper

FireDamper
SmokeDamper
FireSmokeDamper

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 22 Object Model Overview

Copyright  International Alliance for Interoperability - 1996-1999

Inheritence level
Schema 1 2 3 4 5 6 7 8 9 10

BackdraftDamper
ControlDamper
Louver
UserDefined
NotDefined

185 IfcHvacDomain IfcValve
186 IfcSharedBldgServiceElements IfcFlowEquipment

AirFilter
AirHandler
Boiler
Chiller
Coil
Compressor
Convector
CoolingTower
Fan
HeatExchanger
Motor
PackagedACUnit
Pump
TubeBundle
UnitHeater
Elevator
Escalator
UserDefined
NotDefined

187 IfcSharedBldgServiceElements IfcFlowFitting
DuctFitting
PipeFitting
UserDefined
NotDefined

188 IfcSharedBldgServiceElements IfcFlowSegment
DuctSegment
PipeSegment
GutterSegment
UserDefined
NotDefined

189 IfcSharedBldgServiceElements IfcFlowTerminal
AirTerminal
RoofDrain
Scupper
UserDefined
NotDefined

190 IfcSharedBldgServiceElements IfcPlumbingFixture
Faucet
Sink
Toilet
Urinal
Shower
UserDefined
NotDefined

191 IfcSharedBldgElements IfcDoor

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Overview Page 23

Copyright  International Alliance for Interoperability - 1996-1999

Inheritence level
Schema 1 2 3 4 5 6 7 8 9 10

192 IfcSharedBldgElements IfcDoorLining
193 IfcSharedBldgElements IfcDoorPanel

Swinging
Sliding
Revolving
Rollingup
UserDefined
NotDefined

194 IfcSharedBldgServiceElements IfcElectricalAppliance
Computer
Copier
Facsimile
Printer
Telephone
UserDefined
NotDefined

195 IfcSharedBldgServiceElements IfcEquipment
WindowCleaning
UserDefined
NotDefined

196 IfcFacilitiesMgmtDomain IfcFurniture
Table
Chair
Desk
FileCabinet
UserDefined
NotDefined

197 IfcSharedBldgElements IfcPermeableCovering
Grill
Louver
Screen
UserDefined
NotDefined

198 IfcArchitectureDomain IfcRailing
Handrail
Guardrail
Balustrade
UserDefined
NotDefined

199 IfcArchitectureDomain IfcRamp
Elemented
Layered
Solid
UserDefined
NotDefined

200 IfcArchitectureDomain IfcRampFlight
201 IfcSharedBldgElements IfcRoof
202 IfcSharedBldgElements IfcSlab

Floor
Roof
UserDefined
NotDefined

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 24 Object Model Overview

Copyright  International Alliance for Interoperability - 1996-1999

Inheritence level
Schema 1 2 3 4 5 6 7 8 9 10

203 IfcArchitectureDomain IfcLanding
204 IfcArchitectureDomain IfcStair

FireStair
OrnamentalStair
StandardAccessStair
UserDefined
NotDefined

205 IfcArchitectureDomain IfcStairFlight
206 IfcFacilitiesMgmtDomain IfcSystemFurnitureElement

Panel
Worksurface
Storage
UserDefined
NotDefined

207 IfcArchitectureDomain IfcVisualScreen
VisualScreenAssembly
VisualScreenDoorOrGate
VisualScreenPost
VisualScreenPanel
VisualScreenRestroomPartition
VisualScreenRestroomPartitionDoor
UserDefined
NotDefined

208 IfcSharedBldgElements IfcWall
209 IfcSharedBldgElements IfcWindow
210 IfcSharedBldgElements IfcWindowLining
211 IfcSharedBldgElements IfcWindowPanel

FixedPanel
Sliding
Swinging
Pivoting
UserDefined
NotDefined

212 IfcProductExtension IfcOpeningElement
213 IfcProductExtension IfcSite
214 IfcProductExtension IfcSpatialElement
215 IfcProductExtension IfcSpace
216 IfcSharedSpatialElements IfcFireCompartment
217 IfcFacilitiesMgmtDomain IfcWorkstation
218 IfcProductExtension IfcSpaceBoundary
219 IfcKernel IfcProject
220 IfcKernel IfcProxy
221 IfcKernel IfcResource
222 IfcConstructionMgmtDomain IfcConstructionEquipmentResource
223 IfcConstructionMgmtDomain IfcConstructionMaterialResource
224 IfcConstructionMgmtDomain IfcCrewResource
225 IfcConstructionMgmtDomain IfcLaborResource
226 IfcConstructionMgmtDomain IfcProductResource
227 IfcConstructionMgmtDomain IfcSubcontractResource
228 IfcKernel IfcPropertyDefinition
229 IfcProductExtension IfcElectricalCharacteristics
230 IfcProductExtension IfcManufactureInformation

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Overview Page 25

Copyright  International Alliance for Interoperability - 1996-1999

Inheritence level
Schema 1 2 3 4 5 6 7 8 9 10

231 IfcControlExtension IfcMetricValue
232 IfcSharedSpatialElements IfcOccupancyNumber
233 IfcKernel IfcPropertySet
234 IfcKernel IfcExtensionPropertySet
235 IfcSharedSpatialElements IfcSpaceUseCase
236 IfcKernel IfcRelationship
237 IfcKernel IfcRelActsUpon
238 IfcSharedSpatialElements IfcRelOccupiesSpaces
239 IfcArchitectureDomain IfcRelAdjacencyReq
240 IfcControlExtension IfcRelAggregatesConstraints
241 IfcConstructionMgmtDomain IfcRelAggregatesCrewResources
242 IfcProductExtension IfcRelAssemblesElements
243 IfcProductExtension IfcRelAssemblesSpaces
244 IfcKernel IfcRelAssignsProperties
245 IfcKernel IfcRelAssignsTypedProperties
246 IfcSharedBldgServiceElements IfcRelAttachesElements
247 IfcSharedBldgElements IfcRelAttachesToBoundaries
248 IfcProductExtension IfcRelConnectsElements
249 IfcProductExtension IfcRelConnectsPathElements
250 IfcSharedBldgElements IfcRelJoinsElements
251 IfcSharedBldgServiceElements IfcRelConnectsPorts
252 IfcKernel IfcRelContains
253 IfcKernel IfcRelControls
254 IfcControlExtension IfcRelAssignsApprovals
255 IfcControlExtension IfcRelControlsMaintenance
256 IfcProjectMgmtExtension IfcRelCostsObjects
257 IfcControlExtension IfcRelRelatesConstraints
258 IfcSharedBldgElements IfcRelCoversBldgElements
259 IfcProductExtension IfcRelFillsElement
260 IfcKernel IfcRelGroups
261 IfcKernel IfcRelNests
262 IfcProjectMgmtExtension IfcRelNestsCostElements
263 IfcProjectMgmtExtension IfcRelNestsCostSchedules
264 IfcFacilitiesMgmtDomain IfcRelNestsOccupancyScheduleElements
265 IfcFacilitiesMgmtDomain IfcRelNestsOccupancySchedules
266 IfcProcessExtension IfcRelNestsProcesses
267 IfcProcessExtension IfcRelNestsWorkScheduleElements
268 IfcProcessExtension IfcRelNestsWorkSchedules
269 IfcKernel IfcRelProcessOperatesOn
270 IfcProductExtension IfcRelSeparatesSpaces
271 IfcKernel IfcRelSequence
272 IfcProductExtension IfcRelServicesBuildings
273 IfcProcessExtension IfcRelUsesResource
274 IfcProductExtension IfcRelVoidsElement
275 IfcFacilitiesMgmtDomain IfcRelWorkInteraction
276 IfcRepresentationResource IfcShapeAspect
277 IfcUtilityResource IfcTable
278 IfcUtilityResource IfcTableRow
279 IfcGeometryResource IfcTopologicalRepresentationItem
280 IfcGeometryResource IfcConnectedFaceSet
281 IfcGeometryResource IfcClosedShell
282 IfcGeometryResource IfcEdge

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 26 Object Model Overview

Copyright  International Alliance for Interoperability - 1996-1999

Inheritence level
Schema 1 2 3 4 5 6 7 8 9 10

283 IfcGeometryResource IfcOrientedEdge
284 IfcGeometryResource IfcFace
285 IfcGeometryResource IfcFaceBound
286 IfcGeometryResource IfcFaceOuterBound
287 IfcGeometryResource IfcPath
288 IfcGeometryResource IfcVertex
289 IfcUtilityResource IfcTransaction
290 IfcMeasureResource IfcUnitAssignment

3.2. Resource Layer

3.2.1. IfcActorResource
Schema 1 2 3 4 5 6 7 8 9 10

1 IfcActorResource IfcActorRole
2 IfcActorResource IfcAddress

85 IfcActorResource IfcOrganization
87 IfcActorResource IfcPerson
88 IfcActorResource IfcPersonAndOrganization

3.2.2. IfcClassificationResource
Schema 1 2 3 4 5 6 7 8 9 10

11 IfcClassificationResource IfcClassification
12 IfcClassificationResource IfcClassificationList
13 IfcClassificationResource IfcClassificationNotation
84 IfcClassificationResource IfcNotationFa

cet

3.2.3. IfcCostResource
Schema 1 2 3 4 5 6 7 8 9 10

15 IfcCostResource IfcCost
16 IfcCostResource IfcCostModifier

3.2.4. IfcDateTimeResource
Schema 1 2 3 4 5 6 7 8 9 10

10 IfcDateTimeResource IfcCalendarDate
14 IfcDateTimeResource IfcCoordinatedUniversalTimeOffset
17 IfcDateTimeResource IfcDateAndTime
72 IfcDateTimeResource IfcLocalTime

3.2.5. IfcDocumentResource
Schema 1 2 3 4 5 6 7 8 9 10

21 IfcDocumentResource IfcDocumentReference
22 IfcDocumentResource IfcDocumentType

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Overview Page 27

Copyright  International Alliance for Interoperability - 1996-1999

3.2.6. IfcGeometryResource
Schema 1 2 3 4 5 6 7 8 9 10

4 IfcGeometryResource IfcAttDrivenProfileDef
5 IfcGeometryResource IfcArbitraryProfileDef
6 IfcGeometryResource IfcCircleProfileDef
7 IfcGeometryResource IfcRectangleProfileDef
8 IfcGeometryResource IfcTrapeziumProfileDef

24 IfcGeometryResource IfcGeometricRepresentationItem
25 IfcGeometryResource IfcBooleanResult
26 IfcGeometryResource IfcBoundingBox
27 IfcGeometryResource IfcCompositeCurveSegment
28 IfcGeometryResource IfcCurve
29 IfcGeometryResource IfcBoundedCurve
30 IfcGeometryResource IfcCompositeCurve
31 IfcGeometryResource Ifc2DCompositeCurve
32 IfcGeometryResource IfcPolyline
33 IfcGeometryResource IfcTrimmedCurve
34 IfcGeometryResource IfcConic
35 IfcGeometryResource IfcCircle
36 IfcGeometryResource IfcEllipse
37 IfcGeometryResource IfcLine
38 IfcGeometryResource IfcDirection
39 IfcGeometryResource IfcHalfSpaceSolid
40 IfcGeometryResource IfcBoxedHalfSpace
41 IfcGeometryResource IfcPlacement
42 IfcGeometryResource IfcAxis1Placement
43 IfcGeometryResource IfcAxis2Placement2D
44 IfcGeometryResource IfcAxis2Placement3D
45 IfcGeometryResource IfcPoint
46 IfcGeometryResource IfcCartesianPoint
47 IfcGeometryResource IfcPolyLoop
48 IfcGeometryResource IfcSolidModel
49 IfcGeometryResource IfcAttDrivenExtrudedSolid
50 IfcGeometryResource IfcAttDrivenClippedExtrudedSolid
51 IfcGeometryResource IfcAttDrivenRevolvedSolid
52 IfcGeometryResource IfcAttDrivenClippedRevolvedSolid
53 IfcGeometryResource IfcCsgSolid
54 IfcGeometryResource IfcManifoldSolidBrep
55 IfcGeometryResource IfcFacetedBrep
56 IfcGeometryResource IfcFacetedBrepWithVoids
57 IfcGeometryResource IfcSweptAreaSolid
58 IfcGeometryResource IfcExtrudedAreaSolid
59 IfcGeometryResource IfcAttDrivenExtrudedSegment
60 IfcGeometryResource IfcAttDrivenMorphedExtrudedSegment
61 IfcGeometryResource IfcAttDrivenTaperedExtrudedSegment
62 IfcGeometryResource IfcRevolvedAreaSolid
63 IfcGeometryResource IfcAttDrivenRevolvedSegment
64 IfcGeometryResource IfcAttDrivenMorphedRevolvedSegment
65 IfcGeometryResource IfcAttDrivenTaperedRevolvedSegment
66 IfcGeometryResource IfcSurface
67 IfcGeometryResource IfcCurveBoundedPlane
68 IfcGeometryResource IfcElementarySurface
69 IfcGeometryResource IfcPlane

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 28 Object Model Overview

Copyright  International Alliance for Interoperability - 1996-1999

Schema 1 2 3 4 5 6 7 8 9 10
70 IfcGeometryResource IfcVector

279 IfcGeometryResource IfcTopologicalRepresentationItem
280 IfcGeometryResource IfcConnectedFaceSet
281 IfcGeometryResource IfcClosedShell
282 IfcGeometryResource IfcEdge
283 IfcGeometryResource IfcOrientedEdge
284 IfcGeometryResource IfcFace
285 IfcGeometryResource IfcFaceBound
286 IfcGeometryResource IfcFaceOuterBound
287 IfcGeometryResource IfcPath
288 IfcGeometryResource IfcVertex

3.2.7. IfcMaterialResource
Schema 1 2 3 4 5 6 7 8 9 10

73 IfcMaterialResource IfcMaterial
74 IfcMaterialResource IfcMaterialFinish
75 IfcMaterialResource IfcMaterialLayer
76 IfcMaterialResource IfcMaterialLayerSet
77 IfcMaterialResource IfcMaterialLayerSetUsage
78 IfcMaterialResource IfcMaterialList

3.2.8. IfcMeasureResource
Schema 1 2 3 4 5 6 7 8 9 10

18 IfcMeasureResource IfcDerivedUnit
19 IfcMeasureResource IfcDerivedUnitElement
20 IfcMeasureResource IfcDimensionalExponents
79 IfcMeasureResource IfcMeasureWithUnit
80 IfcMeasureResource IfcNamedUnit
81 IfcMeasureResource IfcContextDependentUnit
82 IfcMeasureResource IfcConversionBasedUnit
83 IfcMeasureResource IfcSiUnit

290 IfcMeasureResource IfcUnitAssignment

3.2.9. IfcPropertyResource
Schema 1 2 3 4 5 6 7 8 9 10

23 IfcPropertyResource IfcEnumeration
71 IfcPropertyResource IfcLibrary
92 IfcPropertyResource IfcProperty
93 IfcPropertyResource IfcEnumeratedProperty
94 IfcPropertyResource IfcLibraryReference
95 IfcPropertyResource IfcObjectReference
96 IfcPropertyResource IfcPropertyList
97 IfcPropertyResource IfcSimpleProperty
98 IfcPropertyResource IfcSimplePropertyWithUnit

3.2.10. IfcRepresentationResource
Schema 1 2 3 4 5 6 7 8 9 10

89 IfcRepresentationResource IfcProductRepresentation
90 IfcRepresentationResource IfcProductDefinitionShape
91 IfcRepresentationResource IfcProductDefinitionTopology
99 IfcRepresentationResource IfcRepresentation

100 IfcRepresentationResource IfcShapeRepresentation

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Overview Page 29

Copyright  International Alliance for Interoperability - 1996-1999

101 IfcRepresentationResource IfcTopologyRepresentation
102 IfcRepresentationResource IfcRepresentationContext
103 IfcRepresentationResource IfcGeometricRepresentationContext
276 IfcRepresentationResource IfcShapeAspect

3.2.11. IfcUtilitiesResource
Schema 1 2 3 4 5 6 7 8 9 10

3 IfcUtilityResource IfcApplication
9 IfcUtilityResource IfcAuditTrail

86 IfcUtilityResource IfcOwnerHistory
277 IfcUtilityResource IfcTable
278 IfcUtilityResource IfcTableRow
289 IfcUtilityResource IfcTransaction

3.3. Core Layer

3.3.1. IfcKernel Schema
Schema 1 2 3 4 5 6 7 8 9 10

104 IfcKernel IfcRoot
105 IfcKernel IfcModelingAid
111 IfcKernel IfcLocalPlacement
120 IfcKernel IfcObject
121 IfcKernel IfcActor
123 IfcKernel IfcControl
151 IfcKernel IfcGroup
156 IfcKernel IfcProcess
159 IfcKernel IfcProduct
219 IfcKernel IfcProject
220 IfcKernel IfcProxy
221 IfcKernel IfcResource
228 IfcKernel IfcPropertyDefinition
233 IfcKernel IfcPropertySet
234 IfcKernel IfcExtensionPropertySet
236 IfcKernel IfcRelationship
237 IfcKernel IfcRelActsUpon
244 IfcKernel IfcRelAssignsProperties
245 IfcKernel IfcRelAssignsTypedProperties
252 IfcKernel IfcRelContains
253 IfcKernel IfcRelControls
260 IfcKernel IfcRelGroups
261 IfcKernel IfcRelNests
269 IfcKernel IfcRelProcessOperatesOn
271 IfcKernel IfcRelSequence

3.3.2. IfcControlExtension
Schema 1 2 3 4 5 6 7 8 9 10

123 IfcKernel IfcControl
124 IfcControlExtension IfcApproval
129 IfcControlExtension IfcConstraint
130 IfcControlExtension IfcMetric
131 IfcControlExtension IfcMetricBenchmark
132 IfcControlExtension IfcObjective

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 30 Object Model Overview

Copyright  International Alliance for Interoperability - 1996-1999

138 IfcControlExtension IfcMaintenanceRecord
139 IfcControlExtension IfcMaintenanceType
228 IfcKernel IfcPropertyDefinition
231 IfcControlExtension IfcMetricValue
236 IfcKernel IfcRelationship
237 IfcKernel IfcRelActsUpon
240 IfcControlExtension IfcRelAggregatesConstraints
253 IfcKernel IfcRelControls
254 IfcControlExtension IfcRelAssignsApprovals
255 IfcControlExtension IfcRelControlsMaintenance
257 IfcControlExtension IfcRelRelatesConstraints

3.3.3. IfcModelingAidExtension
Schema 1 2 3 4 5 6 7 8 9 10

104 IfcKernel IfcRoot
105 IfcKernel IfcModelingAid
106 IfcModelingAidExtension IfcDesignGrid
107 IfcModelingAidExtension IfcGridAxis
108 IfcModelingAidExtension IfcGridIntersection
109 IfcModelingAidExtension IfcGridLevel
110 IfcModelingAidExtension IfcLightSource
111 IfcKernel IfcLocalPlacement
112 IfcModelingAidExtension IfcConstrainedPlacement
113 IfcModelingAidExtension IfcPhotometricOutputSpace
114 IfcModelingAidExtension IfcPlacementConstraint
115 IfcModelingAidExtension IfcConstraintRelIntersection
116 IfcModelingAidExtension IfcReferenceGeometryAid
117 IfcModelingAidExtension IfcReferenceCurve
118 IfcModelingAidExtension IfcReferencePoint
119 IfcModelingAidExtension IfcReferenceSurface

3.3.4. IfcProcessExtension
Schema 1 2 3 4 5 6 7 8 9 10

104 IfcKernel IfcRoot
120 IfcKernel IfcObject
123 IfcKernel IfcControl
146 IfcProcessExtension IfcScheduleTimeControl
148 IfcProcessExtension IfcWorkPlan
149 IfcProcessExtension IfcWorkSchedule
150 IfcProcessExtension IfcWorkScheduleElement
156 IfcKernel IfcProcess
158 IfcProcessExtension IfcWorkTask
236 IfcKernel IfcRelationship
261 IfcKernel IfcRelNests
266 IfcProcessExtension IfcRelNestsProcesses
267 IfcProcessExtension IfcRelNestsWorkScheduleElements
268 IfcProcessExtension IfcRelNestsWorkSchedules
273 IfcProcessExtension IfcRelUsesResource

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Overview Page 31

Copyright  International Alliance for Interoperability - 1996-1999

3.3.5. IfcProductExtension
Schema 1 2 3 4 5 6 7 8 9 10

104 IfcKernel IfcRoot
120 IfcKernel IfcObject
123 IfcKernel IfcControl
126 IfcProductExtension IfcConnectionGeometry
127 IfcProductExtension IfcLineConnectionGeometry
128 IfcProductExtension IfcPointConnectionGeometry
151 IfcKernel IfcGroup
154 IfcProductExtension IfcSystem
155 IfcProductExtension IfcZone
159 IfcKernel IfcProduct
160 IfcProductExtension IfcBuilding
161 IfcProductExtension IfcBuildingStorey
163 IfcProductExtension IfcElement
164 IfcProductExtension IfcBuildingElement
212 IfcProductExtension IfcOpeningElement
213 IfcProductExtension IfcSite
214 IfcProductExtension IfcSpatialElement
215 IfcProductExtension IfcSpace
218 IfcProductExtension IfcSpaceBoundary
228 IfcKernel IfcPropertyDefinition
229 IfcProductExtension IfcElectricalCharacteristics
230 IfcProductExtension IfcManufactureInformation
236 IfcKernel IfcRelationship
242 IfcProductExtension IfcRelAssemblesElements
243 IfcProductExtension IfcRelAssemblesSpaces
248 IfcProductExtension IfcRelConnectsElements
249 IfcProductExtension IfcRelConnectsPathElements
259 IfcProductExtension IfcRelFillsElement
270 IfcProductExtension IfcRelSeparatesSpaces
272 IfcProductExtension IfcRelServicesBuildings
274 IfcProductExtension IfcRelVoidsElement

3.3.6. IfcProject Management
Schema 1 2 3 4 5 6 7 8 9 10

104 IfcKernel IfcRoot
120 IfcKernel IfcObject
123 IfcKernel IfcControl
133 IfcProjectMgmtExtension IfcCostElement
134 IfcProjectMgmtExtension IfcCostSchedule
135 IfcProjectMgmtExtension IfcBudget
142 IfcProjectMgmtExtension IfcProjectOrder
143 IfcProjectMgmtExtension IfcChangeOrder
144 IfcProjectMgmtExtension IfcPurchaseOrder
145 IfcProjectMgmtExtension IfcWorkOrder
236 IfcKernel IfcRelationship
256 IfcProjectMgmtExtension IfcRelCostsObjects
262 IfcProjectMgmtExtension IfcRelNestsCostElements
263 IfcProjectMgmtExtension IfcRelNestsCostSchedules

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 32 Object Model Overview

Copyright  International Alliance for Interoperability - 1996-1999

3.4. Interoperability Layer

3.4.1. IfcSharedBldgElements
Schema 1 2 3 4 5 6 7 8 9 10

104 IfcKernel IfcRoot
120 IfcKernel IfcObject
159 IfcKernel IfcProduct
163 IfcProductExtension IfcElement
164 IfcProductExtension IfcBuildingElement
165 IfcSharedBldgElements IfcBeam
166 IfcSharedBldgElements IfcBuiltIn
170 IfcSharedBldgElements IfcColumn
171 IfcSharedBldgElements IfcCovering

Ceiling
Flooring
Cladding
CoveringMillwork
UserDefined
NotDefined

172 IfcSharedBldgElements IfcCurtainWall
191 IfcSharedBldgElements IfcDoor
192 IfcSharedBldgElements IfcDoorLining
193 IfcSharedBldgElements IfcDoorPanel

Swinging
Sliding
Revolving
Rollingup
UserDefined
NotDefined

197 IfcSharedBldgElements IfcPermeableCovering
Grill
Louver
Screen
UserDefined
NotDefined

201 IfcSharedBldgElements IfcRoof
202 IfcSharedBldgElements IfcSlab

Floor
Roof
UserDefined
NotDefined

208 IfcSharedBldgElements IfcWall
209 IfcSharedBldgElements IfcWindow
210 IfcSharedBldgElements IfcWindowLining
211 IfcSharedBldgElements IfcWindowPanel

FixedPanel
Sliding
Swinging
Pivoting
UserDefined
NotDefined

236 IfcKernel IfcRelationship
247 IfcSharedBldgElements IfcRelAttachesToBoundaries
248 IfcProductExtension IfcRelConnectsElements

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Overview Page 33

Copyright  International Alliance for Interoperability - 1996-1999

250 IfcSharedBldgElements IfcRelJoinsElements
258 IfcSharedBldgElements IfcRelCoversBldgElements

3.4.2. IfcSharedBldgServiceElements
Schema 1 2 3 4 5 6 7 8 9 10

104 IfcKernel IfcRoot
120 IfcKernel IfcObject
123 IfcKernel IfcControl
136 IfcSharedBldgServiceElements IfcDistributionPortGeometry

RoundDuctPort
RectangularDuctPort
OvalDuctPort
RoundPipePort
UserDefined
NotDefined

173 IfcSharedBldgServiceElements IfcDiscreteElement
Insulation
UserDefined
NotDefined

174 IfcSharedBldgServiceElements IfcDistributionElement
175 IfcSharedBldgServiceElements IfcDistributionControlElement
179 IfcSharedBldgServiceElements IfcDistributionFlowElement
180 IfcSharedBldgServiceElements IfcElectricalFixture

LightFixture
PowerOutlet
RadiantHeater
UserDefined
NotDefined

181 IfcSharedBldgServiceElements IfcLightFixture
182 IfcSharedBldgServiceElements IfcFlowController
186 IfcSharedBldgServiceElements IfcFlowEquipment

AirFilter
AirHandler
Boiler
Chiller
Coil
Compressor
Convector
CoolingTower
Fan
HeatExchanger
Motor
PackagedACUnit
Pump
TubeBundle
UnitHeater
Elevator
Escalator
UserDefined
NotDefined

187 IfcSharedBldgServiceElements IfcFlowFitting
DuctFitting
PipeFitting
UserDefined
NotDefined

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 34 Object Model Overview

Copyright  International Alliance for Interoperability - 1996-1999

188 IfcSharedBldgServiceElements IfcFlowSegment
DuctSegment
PipeSegment
GutterSegment
UserDefined
NotDefined

189 IfcSharedBldgServiceElements IfcFlowTerminal
AirTerminal
RoofDrain
Scupper
UserDefined
NotDefined

190 IfcSharedBldgServiceElements IfcPlumbingFixture
Faucet
Sink
Toilet
Urinal
Shower
UserDefined
NotDefined

194 IfcSharedBldgServiceElements IfcElectricalAppliance
Computer
Copier
Facsimile
Printer
Telephone
UserDefined
NotDefined

195 IfcSharedBldgServiceElements IfcEquipment
WindowCleaning
UserDefined
NotDefined

246 IfcSharedBldgServiceElements IfcRelAttachesElements
251 IfcSharedBldgServiceElements IfcRelConnectsPorts

3.4.3. IfcSharedSpatialElements
Schema 1 2 3 4 5 6 7 8 9 10

104 IfcKernel IfcRoot
120 IfcKernel IfcObject
121 IfcKernel IfcActor
122 IfcSharedSpatialElements IfcOccupant

Owner
Lessee
Tenant
Assignee
UserDefined
NotDefined

159 IfcKernel IfcProduct
214 IfcProductExtension IfcSpatialElement
215 IfcProductExtension IfcSpace
216 IfcSharedSpatialElements IfcFireCompartment
228 IfcKernel IfcPropertyDefinition
232 IfcSharedSpatialElements IfcOccupancyNumber
235 IfcSharedSpatialElements IfcSpaceUseCase

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Overview Page 35

Copyright  International Alliance for Interoperability - 1996-1999

236 IfcKernel IfcRelationship
237 IfcKernel IfcRelActsUpon
238 IfcSharedSpatialElements IfcRelOccupiesSpaces

3.5. Domain/Applications Model Layer

3.5.1. IfcArchitecture
Schema 1 2 3 4 5 6 7 8 9 10

104 IfcKernel IfcRoot
120 IfcKernel IfcObject
123 IfcKernel IfcControl
147 IfcArchitectureDomain IfcSpaceProgram

CirculationSpaceProgram
OccupiedSpaceProgram
OccupiedSpaceProgramStandard
TechnicalSpaceProgram
UserDefined
NotDefined

151 IfcKernel IfcGroup
153 IfcArchitectureDomain IfcSpaceProgramGroup
159 IfcKernel IfcProduct
163 IfcProductExtension IfcElement
164 IfcProductExtension IfcBuildingElement
167 IfcArchitectureDomain IfcBuiltInAccessory

DoorOrWindowHardware
PublicRestroom
Unspecified
UserDefined
NotDefined

168 IfcArchitectureDomain IfcCabinet
Office
Restroom
Storage
Unspecified
UserDefined
NotDefined

169 IfcArchitectureDomain IfcCounterOrShelf
CounterTop
Shelf
UserDefined
NotDefined

198 IfcArchitectureDomain IfcRailing
Handrail
Guardrail
Balustrade
UserDefined
NotDefined

199 IfcArchitectureDomain IfcRamp
Elemented
Layered
Solid
UserDefined

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 36 Object Model Overview

Copyright  International Alliance for Interoperability - 1996-1999

NotDefined
200 IfcArchitectureDomain IfcRampFlight
203 IfcArchitectureDomain IfcLanding
204 IfcArchitectureDomain IfcStair

FireStair
OrnamentalStair
StandardAccessStair
UserDefined
NotDefined

205 IfcArchitectureDomain IfcStairFlight
207 IfcArchitectureDomain IfcVisualScreen

VisualScreenAssembly
VisualScreenDoorOrGate
VisualScreenPost
VisualScreenPanel
VisualScreenRestroomPartition
VisualScreenRestroomPartitionDoor
UserDefined
NotDefined

236 IfcKernel IfcRelationship
239 IfcArchitectureDomain IfcRelAdjacencyReq

3.5.2. IfcConstructionMgmtDomain
Schema 1 2 3 4 5 6 7 8 9 10

104 IfcKernel IfcRoot
120 IfcKernel IfcObject
123 IfcKernel IfcControl
125 IfcConstructionMgmtDomain IfcCMDocPackage
159 IfcKernel IfcProduct
162 IfcConstructionMgmtDomain IfcConstructionZoneAggregationProduct
221 IfcKernel IfcResource
222 IfcConstructionMgmtDomain IfcConstructionEquipmentResource
223 IfcConstructionMgmtDomain IfcConstructionMaterialResource
224 IfcConstructionMgmtDomain IfcCrewResource
225 IfcConstructionMgmtDomain IfcLaborResource
226 IfcConstructionMgmtDomain IfcProductResource
227 IfcConstructionMgmtDomain IfcSubcontractResource
236 IfcKernel IfcRelationship
241 IfcConstructionMgmtDomain IfcRelAggregatesCrewResources

3.5.3. IfcFacilitiesMgmt
Schema 1 2 3 4 5 6 7 8 9 10

104 IfcKernel IfcRoot
120 IfcKernel IfcObject
123 IfcKernel IfcControl
137 IfcFacilitiesMgmtDomain IfcFurnitureModel
140 IfcFacilitiesMgmtDomain IfcOccupancySchedule
141 IfcFacilitiesMgmtDomain IfcOccupancyScheduleElement
151 IfcKernel IfcGroup
152 IfcFacilitiesMgmtDomain IfcInventory

AssetInventory
SpaceInventory
UserDefined

Volume 2 - IFC Object Model Guide IFC Release 2.0
Object Model Overview Page 37

Copyright  International Alliance for Interoperability - 1996-1999

NotDefined
156 IfcKernel IfcProcess
157 IfcFacilitiesMgmtDomain IfcOccupancyTask
159 IfcKernel IfcProduct
163 IfcProductExtension IfcElement
164 IfcProductExtension IfcBuildingElement
196 IfcFacilitiesMgmtDomain IfcFurniture

Table
Chair
Desk
FileCabinet
UserDefined
NotDefined

206 IfcFacilitiesMgmtDomain IfcSystemFurnitureElement
Panel
Worksurface
Storage
UserDefined
NotDefined

214 IfcProductExtension IfcSpatialElement
215 IfcProductExtension IfcSpace
217 IfcFacilitiesMgmtDomain IfcWorkstation
236 IfcKernel IfcRelationship
261 IfcKernel IfcRelNests
264 IfcFacilitiesMgmtDomain IfcRelNestsOccupancyScheduleElements
265 IfcFacilitiesMgmtDomain IfcRelNestsOccupancySchedules
275 IfcFacilitiesMgmtDomain IfcRelWorkInteraction

3.5.4. IfcHvacDomain
Schema 1 2 3 4 5 6 7 8 9 10

104 IfcKernel IfcRoot
120 IfcKernel IfcObject
159 IfcKernel IfcProduct
163 IfcProductExtension IfcElement
164 IfcProductExtension IfcBuildingElement
174 IfcSharedBldgServiceElements IfcDistributionElement
175 IfcSharedBldgServiceElements IfcDistributionControlElement
176 IfcHvacDomain IfcActuator

ElectricActuator
PneumaticActuator
HydraulicActuator
HandOperatedActuator
UserDefined
NotDefined

177 IfcHvacDomain IfcController
HvacController
UserDefined
NotDefined

178 IfcHvacDomain IfcSensor
HvacSensor
UserDefined
NotDefined

179 IfcSharedBldgServiceElements IfcDistributionFlowElement

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 38 Object Model Overview

Copyright  International Alliance for Interoperability - 1996-1999

182 IfcSharedBldgServiceElements IfcFlowController
183 IfcHvacDomain IfcAirTerminalBox
184 IfcHvacDomain IfcDamper

FireDamper
SmokeDamper
FireSmokeDamper
BackdraftDamper
ControlDamper
Louver
UserDefined
NotDefined

185 IfcHvacDomain IfcValve

Volume 2 - IFC Object Model Guide IFC Release 2.0
Key Object Model Concepts Page 39

Copyright  International Alliance for Interoperability - 1996-1999

4. Key Object Model Concepts

4.1. Specialized Views of the IFC Model
IFC can be supported through several different implementation and product alternatives. Over the next
several years, we anticipate product implementations will provide the following 'categories' of functionality -- in
the the order shown -- from least to most interoperable.

• Read/write of IFC model files ß Data Exchange
• Database oriented IFC model file server ß Runtime interface calls (data only)
• Runtime interoperable application objects ß Runtime interface calls (data or services)

In order to facilitate development of these different types of products and to reduce the chance for different
interpretations by different vendors, we have included specialized, 'industry standard' views of the IFC model.
Currently these 'standard views' include:

• Data Model for Data Exchange ß EXPRESS (ISO standard)
• Standard interface definitions ß IDL (OMG standard)

4.1.1. Data Model view in EXPRESS
EXPRESS is the ISO standard for the definition of software 'Data Models'. It is defined by ISO 10303 Part 11,
"Description Methods: The EXPRESS language reference manual".

The Data Model view of the IFC object model is presented in volume 3 of these specifications - "IFC Object
Model Reference".

There are serveral commercially available toolsets for compiling or interpreting EXPRESS data model
definitions. Many of these implement the EXPRESS language mappings to C++, IDL, Java and the Standard
Data Access Interfaces (SDAI) -- all defined in parts of ISO 10303. Others of these toolsets enable software
developers to read and write ASCII files structured according to the EXPRESS schema -- using the physical
file structure defined in ISO 10303 part 21.

4.1.2. Software Interfaces view in OMG IDL
The Interface Definition Language (IDL) is a standard for defining software interfaces - defined by the Object
Management Group (OMG). It is most closely related to OMG's Common Object Request Broker
Architecture (CORBA), and is one of the most commonly used interface definition languages in the software
industry.

Within the context of IFC, we use IDL to define the standard software interfaces to be supported by IFC
objects at runtime. Software vendors seeking product certification at the interface level, must successfully
complete testing of these standard software interfaces.

The Software Interfaces view of the IFC object model is presented in volume 3 of these specifications - "IFC
Object Model Reference".

There are several commercially available toolsets for compiling IDL interface definitions. Most of these
implement the IDL language mappings to C, C++ and Smalltalk -- which helps to automate the translation
from software product design (using IDL) to implementation (using one of the compiled languages listed).

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 40 Key Object Model Concepts

Copyright  International Alliance for Interoperability - 1996-1999

4.2. Multi-Functional Elements and Systems
Many attempts to model AEC projects in the past have been significantly limited because they chose to
categorize elements according to a primary functional role or as part of a system. This has not worked well
for AEC projects because so many elements act in multiple roles and/or in multiple systems. In the IFC
object model, we have attempted to avoid this by defining model elements, functional roles, and systems
separately so that an element can assume multiple roles and/or be a member of multiple systems.

Project elements are defined as specializations of IfcElement.

As this release of IFC is limited to project information sharing only (not functional behavior), functional roles
are defined as collections of attributes and relationships associated with this role that will be exposed through
a software interface corresponding to that role.

Project systems are defined as specializations of IfcSystem. For this release of IFC, this specialization will be
done solely through a system TypeDefinition.

See IfcElement subtypes, IfcElement.PerformedFuntions:Set [0:?] IfcElementFunctionTypeEnum and
IfcSystem.

4.3. Capturing Design Intent and Design Constraints
One of the most powerful features of the IFC model design is the inclusion of entities that will allow
applications to capture design intent and design constraints. The this release, we have only included a small
subset of what will be possible in future releases. Nevertheless, some powerful applications functionality will
be enabled, even with models defined using this release of IFC.

Some of the design intent and design constraint concepts supported in this IFC release are discussed next.

4.3.1. Specified Design Program
One of the most important information sets in any AEC/FM project is the client specified design program.
Architects have developed elaborate systems for capturing this programmatic information, but to date, there
are almost no applications which link these client specified design programs to design tools. We have
included a small set of entities that will allow some of this design program information to be captured and
related to elements in the project design. This will enable applications to aid designers in satisfying design
program requirements and also in demonstrating the degree to which program criterion are satisfied.

Specifically, with this release, detailed requirements for Spaces are included as well as space adjacency
requirements. This information is related directly to the spaces in the design model, thus enabling
applications and/or users to verify that the client specified design program has been satisfied.

See IfcProgramGroup, IfcSpaceProgram and IfcRelSpaceAdjacency.

4.3.2. Design Modeling Aids
Another important set of design constraints which AEC professionals are currently forced to coordinate
manually is design grids. Virtually all projects are designed using one or more design grids (for structure,
design, planning, facilities, etc.). This release of IFC includes a set of design grid elements and alignment
entities which will allow the designer to encode their intent to align building elements with design grid
elements or with other building elements.

Future releases should allow much more flexible use of design Aids or constraints including more complex
geometric relationships, alignment with offsets, budgetary constraints and code constraints.

See IfcDesignGrid, IfcGridLevel, IfcGridAxis, IfcGridIntersection, IfcReferencePoint, IfcReferenctCurve,
IfcReferenceSurface and IfcConstrainedPlacement.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Key Object Model Concepts Page 41

Copyright  International Alliance for Interoperability - 1996-1999

4.3.3. Connections between Model Elements
Another design intent that can be captured and communicated via the IFC model is connectivity. Current
design tools do not allow such relationships and when a design change is made, the AEC user is forced to
manually update the impact on elements that 'should' remain connected. With IFC models, it will be possible
to capture the designer's intent to connect two or more elements. Within applications supporting this part of
IFC, when a design change involves moving one of the connected elements, the application will correctly
move or stretch the connected elements.

This release of IFC only supports point connections (the only subtype of IfcConnectionGeometry). However,
future releases will add connections at edges and surfaces.

See IfcRelConnectsElements, IfcRelConnectsPathElements and IfcPointConnection

4.4. Relationships between Objects

4.4.1. Relationships used in this Release
This inclusion of relationships between object in an IFC model is one of the most important improvements
over previous AEC software information sets. By standardizing the representation and thus the
understanding of key semantic relationships between objects in IFC models, software applications will be
able to deliver much more intelligent behavior in these objects.

However, the range of relationship types included in this release is limited. In general, we have included
relationships that fall into five categories:

• Containment (both physical and conceptual) -- discussed below
• Grouping -- discussed below
• Connectivity -- discussed above in "Key Concepts"
• Constraint -- discussed above in "Key Concepts"
• Resource -- discussed above in "Key Concepts"
• General (where some special semantic meaning is defined) -- instance unique and not discussed

In many cases, relationships have been 'generalized' using objectified relationships -- discussed below.

4.4.2. Objectified Relationships
While more 'expensive' to implement and in terms of software performance, Objectified relationships provide
several advantages over relationships declared within a specific class.

There were three driving motivations for using objectified relationsips:

1. Generalization - generalization of relationships helps to simplify the model

2. Many to Many relationship resolution - In a number of cases in the model, we have situations where
the relationships are many to many between two classes. Objectified relationships allow us to
normalize these to a pair of many to one relationships.

3. Relationship objects that require behavior - In other cases, we are anticipated future requirements
for the IFC project model and supporting applications. The nature of some relationships will require
intelligent behavior in applications. An implementer will need to create a separate class for such a
relationships in order to encapsulate this behavior. This will simplify implementation of the objects
which use this relationship. As applications will be forced to objectify such relationships, we have
objectified them in the object model in an effort to enable a close mapping between the shared project
model and the object model used by supporting applications.

4.4.3. Containment
Throughout the model, you will see a standardized use of the relationships "HasXxx" and "PartOfXxx".
These standard relationship names have been used to represent two types of Containment:

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 42 Key Object Model Concepts

Copyright  International Alliance for Interoperability - 1996-1999

• Primary IFC model element hierarchy
• Membership in a group or system.

Primary IFC Model element hierarchy

It is important to include a primary structuring of elements in a CAD model. The IFC model structure is
aligned with the most common organization of AEC project information:

Project >Sites >Buildings > Storeys

> > > > Spaces

> > > > Elements

That is to say; Projects contain Sites; Sites contain buildings; Buildings can contain Storeys. Additionally,
Sites, Buildings and Storeys may each contain Spaces or other building elements, either directly or through
another contained element.

Once again, this will enable applications to provide much more intelligent behavior. When a door or window
is removed, the opening may be healed; when a room is deleted, the user may be prompted about what to do
with the contained elements (assign them to another room or delete them as well).

4.4.4. Object Grouping
There are several examples of grouping elements in the model. One of the most obvious is through
membership to a system object. The system object maintains a list of all the elements which are 'PartOf' that
system. Possible uses for such groupings in software applications are endless.

For example, all members of a SpaceSeparation system associated with a suite of rooms could be selected
for addition of sound or fire resistance attributes; all elements in an air duct distribution system could be
selected for reconfiguration to rectangular versus circular shape.

This release of IFC only begins to allow such associations to be captured in the model. It does not yet
include any standardized behavior that might be related to such associations.

4.5. IFC Model Extension
As the IFC Project Model must be used by a large number of applications to be successful, it is important that
application developers not feel encumbered by it. In fact, it is a primary goal of the IAI that developers view
the IFC Project Model as a platform which empowers them through access to a very large constituency of
end users and compatible applications. Opportunities for strategic alliances, cooperative development and
joint marketing with other developers should be significantly enhanced.

Therefore, we have included some concepts in the design of the IFC object Model that will enable software
vendor extensions beyond the standard definitions provided by the IAI. Vendors who collaborate would be
able to pass this extended information between their applications, using the standard IFC infrastructure.

Over time, such extensions should be submitted for adoption by the IAI in subsequent releases of IFC. In this
way, IFC may be extended through the work of many organizations beyond the IAI.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Key Object Model Concepts Page 43

Copyright  International Alliance for Interoperability - 1996-1999

4.5.1. Extension by Developers
In this IFC release, the primary mechanisms for extension are:

• User defined types

à allow the vendor to define specific object types (from the point of view of their application) which
will then allow them to associate datasets which are shared by one or many instances of the type.
This extension data is preserved through data exchange with other certified IFC applications.

• PropertySets

à allow the vendor to define virtually any collection of data needed by their application. This data
can be related to individual objects or to to groups of a particular User Defined Type (see above).
This custom defined data will be preserved through round-trip data exchanges with other IFC
applications.

Applications seeking to use these extension mechanisms must simply implement the associated IFC model
entities -- either in a data exchange or software interfaces implementation. Methods for documenting such
extensions are provided in these specifications.

4.5.2. Extension by End Users
The software vendor accessible extension mechanism described above could also be exposed to the end
user. The vendor would need to develop a generalized interface such that the End User can specify
PropertySets.

The application would also need to provide methods for the user to store and retrieve these PropertySet
definitions and to associate them with individual object instances or gropus of objects.

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 44 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

5. Guide to the Resource Layer

5.1. IfcActorResource
The IfcActorResource schema within the IFC Model enables information concerning a person or organization
that will undertake work on, hold responsibility for or otherwise be associated with an object or several objects
acting together to be assigned. It is developed as a separate schema containing identified actor-related
classes because it is a general idea that can be applied to many other classes.

The classes and attributes within the IfcActorResource schema support the identification of actors sufficiently
for the purposes of a project model. The information content of the schema is not sufficient for the exchange
of detailed information about human resources.

5.1.1. IfcActorSelect
Allows the selection of the form of actor that will be used. There are three possible selections that can be
made:

• Person
• Organization
• Person and organization where there is a need for both to be identified.

Only one of these classes may be selected and it is the selection that is instantiated in a data exchange file
and not the SELECT class itself.

5.1.2. IfcPerson
There are many situations where there is a need to identify a particular person as the relevant actor. The IFC
model provides sufficient capability to do this.

NOTE: Many countries have legislation concerning the identification of individual persons within databases.
Although the intent of the IFC Object Model is to enable a means for data exchange and sharing, it
does have the capability to provide the specification for a database that might be subject to such
legislation if individual persons can be identified. Users should ensure that they are operating within
the constraints of such legislation in cases where information to be exchanged does identify persons.

5.1.2.1. FamilyName

Gives the family name of the person concerned.

IfcPersonAndOrganization

IfcActorSelect

IfcPerson IfcOrganization

IfcPerson

STRING

STRING

STRING

STRING

STRING

IfcActorRole

IfcAddress

FamilyName

SuffixTitles

PrefixTitles

MiddleNames

GivenName

Roles L[0:?]

Addresses L[0:?]

(INV) OfPerson S[0:?]

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 45

Copyright  International Alliance for Interoperability - 1996-1999

Care needs to be taken when assigning the family name depending on the normal usage within a particular
region. For instance, it is normal in many parts of Europe and USA for the family name to be stated as the
last name whilst in countries that follow Chinese usage, it is normally given first. In countries that follow
Spanish usage, a family name is normally a multiple name that combines the first part of the father’s family
name with the first part of the mother’s family name.

FamilyName is an optional attribute; that is, it does not have to be asserted. However, if an instance of
IfcPerson does exist, a rule is applied that either the family name or the given name must exist. It is more
normal that the family name is specified.

5.1.2.2. GivenName

This is the familiar name by which a person is known. It is determined using the reverse of the family name.
That is, it is the first name in European and USA usage and the last part of the name in Chinese usage.

GivenName is an optional attribute; that is, it does not have to be asserted. However, see the rule that is
applied in FamilyName above.

5.1.2.3. MiddleNames

These are additional given names that are not normally used
in familiar communication but that may be asserted to provide
additional identification of a specific person. They may be
particularly useful in situations where the person concerned
has a name that occurs commonly within a region.

It is possible that a person may have more than one middle
name. However, the value of middle names that is assigned
is a simple string. Therefore, middle names are collected
together into a single value. This means that it is not possible
to use a second or subsequent middle name for any complex
sorting purpose. It is also a limitation on the use of the
IfcActorResource schema for the transfer of information
concerning human resources.

MiddleNames is an optional attribute; that is, it does not have
to be asserted.

5.1.2.4. PrefixTitles

Sets out the form of address for the person concerned.
Although there may be many titles used as a prefix to a name,
they are collected together into a single string.

PrefixTitles is an optional attribute; that is, it does not have to
be asserted.

5.1.2.5. SuffixTitles

Sets out the awards and honors of the person concerned.
Although there may be many awards used as a suffix to a
name, they are collected together into a single string.

SuffixTitles is an optional attribute; that is, it does not have to
be asserted.

5.1.2.6. Addresses

Provides a reference to the address at which a person may be
located. A person may have more than one address and so a
list may be defined. Alternatively, it is possible to leave out the
address (although the list of addresses still has to be provided

Let me introduce myself.
My given name is John.
My middle names are Pierre Olaf Karl
My family name is Martinez Caramba

But you should give me my titles.
Prefix with Don Prof. Dr. Ing.
Suffix with PhD. MSc. BA. PDQ. RV.
Well, OK, it's not mandatory.

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 46 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

as an empty list).

An inverse relation also enables identification of the persons located at that address.

Addresses is a list that can contain zero, one or many references to IfcAddress instances; that is, it must be
asserted even if there are no IfcAddress instances.

5.1.2.7. Roles

Defines the roles that may be played by a person. It is
possible that a person within a project may play several roles
at the same time. Therefore the relationship is described as a
list. The minimum number of roles that may be played is zero.

It is possible that several objects requiring the assignment of
actor might reference the same instance of an IfcPersonclass
having a particular set of roles. It is also possible to define
several instances of an IfcPerson class in which each
instance references the same person but in which the role(s)
may be varied.

Roles is a list that can contain zero, one or many references
to IfcActorRole instances; that is, it must be asserted even if
there are no IfcActorRole instances.

5.1.3. IfcOrganization
There are many situations where there is a need to identify an organization as the relevant actor. The IFC
model provides sufficient capability to do this.

5.1.3.1. Name

This is the name by which an organization is known.

Name is a mandatory attribute; that is, it must be asserted.

5.1.3.2. Addresses

Provides a reference to the address at which an organization may be located. An organization may have
more than one address and so a list may be defined. Alternatively, it is possible to leave out the address
(although the list of addresses still has to be provided as an empty list)

Addresses is a list that can contain zero, one or many references to IfcAddress instances; that is, it must be
asserted even if there are no IfcAddress instances.

5.1.3.3. Roles

Defines the roles that may be played by an organization. It is possible that an organization within a project
may play several roles at the same time. Therefore the relationship is described as a list. The minimum
number of roles that may be played is zero.

I am a man of many roles.
For each role, a different hat.

IfcOrganization

STRING

STRINGIfcActorRole

IfcAddress Description

NameRoles L[0:?]

Addresses L[0:?]

(INV) OfOrganization S[0:?]

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 47

Copyright  International Alliance for Interoperability - 1996-1999

It is possible that several objects requiring the
assignment of actor might reference the same
instance of an IfcOrganization class having a
particular set of roles. It is also possible to define
several instances of an IfcOrganization class in
which each instance references the same person
but in which the role(s) may be varied.

Roles is a list that can contain zero, one or many
references to IfcActorRole instances; that is, it must
be asserted even if there are no IfcActorRole
instances.

5.1.3.4. Description

Provides a description of the organization. This
description may be as short or as detailed as
necessary.

Description is an optional attribute; that is, it does
not have to be asserted.

5.1.4. IfcPersonAndOrganization
Allows both person and organization to be assigned.

5.1.4.1. ThePerson

References an instance of the IfcPerson class (see above)

5.1.4.2. The Organization

References an instance of the IfcOrganization class (see above)

5.1.4.3. Roles

Defines the roles that may be played by a person and organization combination. It is possible that a person
and organization combination within a project may play several roles at the same time. Therefore the
relationship is described as a list. The minimum number of roles that may be played is zero.

It is possible that several objects requiring the assignment of actor might reference the same instance of an
IfcPersonAndOrganization class having a particular set of roles. It is also possible to define several instances
of an IfcPersonAndOrganization class in which each instance references the same person and the same
organization but in which the role(s) may be varied.

Roles is a list that can contain zero, one or many references to IfcActorRole instances; that is, it must be
asserted even if there are no IfcActorRole instances.

IfcPersonAndOrganizationIfcPerson IfcOrganization
TheOrganizationThePerson

IfcActorRole

Roles L[0:?]

My employer is MegaBuild 2000.
They are Architects, Engineers and Sushi
Bar operators.

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 48 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

5.1.5. IfcActorRole
Defines a role that may be played by an actor within a project

5.1.5.1. Name

Provides an enumerated list of the roles that are currently defined within the IFC Model and that may be
assigned to an actor. The currently defined list includes the following roles:
Supplier Manufacturer Contractor SubContractor
Architect StructuralEngineer ServicesEngineer CostEngineer
Client BuildingOwner BuildingOperator UserDefined
NotDefined);

Only one name may be asserted for an instance of the IfcActorRole class.

Name is a mandatory attribute; that is, it must be asserted.

5.1.5.2. Description

Provides a description of the asserted role. This description may be as short or as detailed as necessary.

Description is an optional attribute; that is, it does not have to be asserted.

5.1.6. IfcAddress
Identifies the location and means of communication with a place. Note that although the attributes of the
IfcAddress class are either optional or can be asserted as empty lists, whenever an instance of IfcAddress is
required, a rule exists that at least one of the attributes MUST be asserted.

5.1.6.1. InternalLocation

Provides a location at which a person or organization may be located in the context of their place of work. For
instance, a person may be located in the Contracts Department or in Room B/256 whilst an organization may
be located at Site 3B where 3B is an internal code that specifies a particular place without reference to the
address.

InternalLocation is an optional attribute; that is, it does not have to be asserted.

IfcActorRoleSTRING
Description Name

IfcRoleEnum

IfcAddress

STRING

STRING

AddressLines L[0:?]

InternalLocation

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

Country

PostalCode

Region

Town

Description

WWWHomePage

FacsimileNumbers L[0:?]

TelephoneNumbers L[0:?]

ElectronicMailAddresses L[0:?]

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 49

Copyright  International Alliance for Interoperability - 1996-1999

5.1.6.2. AddressLines

Contains all of the elements of an address that would enable its identification within a town or city.

AddressLines is a list that can contain zero, one or many lines; that is, it must be asserted even if no address
lines are to be assigned.

5.1.6.3. Town

Although this attribute is given the name ‘town’, it is
used to identify the major geographical entity. It may
be used to identify a hamlet, village, town, city or
metropolitan area (unless metropolitan area is
normally identified as a region).

For instance, the value of town might be assigned as
Upper Bucklebury (which is the name of a village in
England). Alternatively, it might be assigned as New
York.

Town is an optional attribute; that is, it does not have
to be asserted.

5.1.6.4. Region

Identifies the name of the county, state, dpartement
or other administrative designation

Region is an optional attribute; that is, it does not
have to be asserted.

5.1.6.5. PostalCode

Gives the postal or zip code used by the local mail
service for the delivery of letters and parcels.

PostalCode is an optional attribute; that is, it does not have to be asserted.

5.1.6.6. Country

Country is an optional attribute; that is, it does not have to be asserted.

5.1.6.7. FacsimileNumbers

Identifies the fax numbers used by a person or
organization. A person organization may have more than
one fax number and so a list may be defined.

FacsimileNumbers is a list that can contain zero, one or
many values; that is, it must be asserted even if there
are no numbers identified.

My office is in the Orange Building, Room 14/62.
It's at 2862 High Street, New Oldville,
Upper Cuidado, Zarkovia 28146.

You can reach me by phone,
fax or email in my car

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 50 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

5.1.6.8. TelephoneNumbers

Identifies the telephone numbers used by a person or
organization. A person organization may have more than one
telephone number and so a list may be defined.

TelephoneNumbers is a list that can contain zero, one or many
values; that is, it must be asserted even if there are no numbers
identified.

5.1.6.9. ElectronicMailAddresses

Identifies the email addresses used by a person or organization.
A person organization may have more than one email address
and so a list may be defined.

ElectronicMailAddresses is a list that can contain zero, one or
many values; that is, it must be asserted even if there are no
addresses identified.

5.1.6.10. TelexNumber

Although telex is no longer widely used, provision is made for the inclusion of a telex number if necessary.

TelexNumber is an optional attribute; that is, it does not have to be asserted.

5.1.6.11. WWWHomePageURL

Identifies the entry address or home page of a World Wide Web site for a person or organization.

WWWHomePageURL is an optional attribute; that is, it does not have to be asserted.

5.1.6.12. Description

Provides a description of the address. This description may be as short or as detailed as necessary.

Description is an optional attribute; that is, it does not have to be asserted.

5.1.6.13. PostalBox

Identifies the address to be used for a postal box or mail drop where physical mail is to be delivered to a
collection address.

PostalBox is an optional attribute; that is, it does not have to be asserted.

5.2. IfcClassificationResource

5.2.1. Introduction
The IfcClassificationFunction model has been developed from that contained within the proposed ISO 10303
part 106 (Building Construction Core Model) which was built in conjunction with ISO Technical Committee 59.
It represents an agreed data model for the classification of objects. In developing the model, it was
recognized that there are many different classification systems in use throughout the industry and that their
use differs according to geographical location, industry discipline and other factors. For a generic model such
as the IFC Integrated Model, it is necessary to allow for the adoption of any rational classification system
whether it be based on elements, work sections or any other classifiable division.

Or on my boat.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 51

Copyright  International Alliance for Interoperability - 1996-1999

5.2.2. Scope
This part of the Industry Foundation Class Specifications specifies the use of the independent resources
necessary for the scope and information requirements for the exchange and sharing of classification
information between application systems. Such information may be used at all stages of the life-cycle of a
building

The following are within the scope of this part of the specifications:

• The provision of one or more classifications to an object.
• The designation of a classification in terms of its author, table and notation.
• The provision of a means of semantically identifying the meaning of a classification notation.
• The identification of the classification which is the most relevant at a particular time.

The following are outside of the scope of this part of the specifications:

• The ability to translate from one classification notation to another.

5.2.3. Background
The principal applied is that any type of object can be classified. For the purposes of classification, no
distinction is made between a product, a process, a control or a resource. Any of these types may be dealt
with via classification tables. To satisfy the classification requirements, one or more IfcClassificationFunctions
are used. It should be noted that the IFC Integrated Model specifically allows for more than one classification
function to be applied to an object. The model also allows for the classification requirement to be satisfied by
zero classification functions and this allows for situations where classification is not required.

Equally, and as would be expected, a classification function can be used to satisfy the classification
requirements of many objects since there are likely to be multiple instances of the same class of object.

An IfcClassificationFunction is derived from a table of CharacteristicFunctions. This is the classic table to be
found in all classification systems. The model allows for the IfcClassificationFunction to comprise a list of
CharacteristicFunctions. The use of the ‘list’ aggregation in the relationship rather than ‘set’ implies that there
is order in the CharacteristicFunctions. This order is used by allowing the IfcClassificationFunction to have a
priority value. This is an integer which points to the index of the CharacteristicFunction in the list which has
the highest priority. The term 'priority' is used rather than any other, such as index, to capture the idea that at
any one time a particular characteristic function has more importance than other characteristic functions
which may be available. Index as a term would not capture this concept of importance. By changing the
priority value within an application, the classified view of an object is allowed to change to suit prevailing
circumstances.

To allow the classification system used to be recognized, each CharacteristicFunction has attributes which
define the publisher, the element table and the notation. The publisher identifies what would usually be
considered to be the name of the classification system such as CI/SfB, BSAB, CAWS, Masterformat,
Uniformat etc. whilst the element table determines which of the various forms or tables within the system is
used. Notation identifies the classification reference normally used. For instance, within the CI/SfB system
piped engineering services are contained under the 500 notation whilst in the CAWS system they are within
the S-- notation. A further attribute available is a textual description of the classification notation so that, as
well as the actual notation, a semantic idea of the notation meaning can be shared.

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 52 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

These attributes of the CharacteristicFunction can be
visualized from the card index box shown here. The
publisher is the box, which contains various cards
which are the tables, each table having a set of rows
with each row being a notation.

It is important to note that, whilst several different
classifications may be applied to an object via the
classification function, the model does not imply that
there is any equivalence between such classification
notations. This precludes the use of the model as a
means for the translation of one classification
notation to another. The reason for this is that,
generally, it is possible to select from any of several
different notations within a classification system for
an object. The actual selection is the responsibility of
the user according to circumstances. Therefore, there is a many to many relationship between classification
systems for which there is no resolution at this stage of development.

5.2.4. References
ISO 10303-WD106 (version S511);, Industrial automation systems and integration - Product data
representation and exchange - Part 106: Building Construction Core Model

5.3. IfcCostResource
The IfcCostResource schema within the IFC Model enables information concerning the price or cost of an
object or several objects acting together to be assigned. It is developed as a separate schema containing
identified Cost related classes because it is a general idea that can be applied to many other classes
including those within the Product, process and Resource headings. It is more effective to apply cost as a
class attribute than as a simple attribute for various reasons:

• Cost may be assigned to an object or not as the need arises;
• More detailed ideas of cost can be developed such as the assignment of cost additions, discounts,

currency identity and the like;
• It is easier to define complex operations on cost than would be the case with simple attributes.

There are three basic ideas within the IfcCostResource schema:
• The Cost class that is used to define the cost or price of an object and that is assigned to another

object;
• The currency in which a Cost is expressed
• Modifiers that may be applied to a Cost to vary its value for a purpose such as price increase, discount

etc.

5.3.1. IfcCost
This class identifies all of the basic ideas concerning a Cost.

5.3.1.1. BaseCostValue

Identifies the value that a Cost has before the application of any
modifiers. Its intended purpose is to capture the Cost as it would be
obtained from a price list or from the gross price indicated on a
quotation.

Where a project is costed on a fluctuating price basis, the base cost
may be used to identify the quoted price of an item from a supplier or

Publisher

Table

Notation

So the list price of gold
bricks is $150 each.

We'll base our cost on that.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 53

Copyright  International Alliance for Interoperability - 1996-1999

manufacturer at different points in time and it can be used therefore as a basis on which to claim additional
sums.

The actual value to be assigned to this attribute is obtained using the IfcMonetaryMeasure class that is
described within the IfcMeasureResource schema.

BaseCostValue is an optional attribute; that is, it does not have to be asserted.

5.3.1.2. FinalCostValue

Identifies the value that a Cost has after the application of any modifiers.
Its intended purpose is to capture the Cost as it would be taking into
account any price additions, discounts or rebates that may be applicable
to the base cost value. Generally, the final cost value would be used as
the basis for the completion of cost schedule elements before the
addition of overhead and profit sums or as the basis for ordering a
component or service.

The actual value to be assigned to this attribute is obtained using the
IfcMonetaryMeasure class that is described within the
IfcMeasureResource schema.

FinalCostValue is an optional attribute; that is, it does not have to be
asserted.

NOTE: The above identifies the original intended purposes of base cost value and final cost value. However,
the interpretation of the actual meaning of these terms and how they are applied is left to the
discretion of the user. If they are applied as intended, then it is possible to apply formulae to derive
the one cost from the other. The other attributes assigned to IfcCost and described below enable this.
However, it is feasible to use the two cost values in a completely disconnected manner. There is no
way to indicate whether or not this is the case within the IFC model and consequently, recording of
the fact that there is no connection between the values is the responsibility of the user.

5.3.1.3. Currency

Currency is one of the key ideas within the IfcCostResource schema.
Every instance of IfcCost must have a currency assigned to it.

The actual value to be assigned to this attribute is obtained using the
IfcCurrencyEnum class that is described within the IfcMeasureResource
schema. This class contains a selection of currency options from many
countries and currency zones. The list is not totally complete but does
include all currencies that are normally traded by banks on a bilateral
basis. The value is given using the normal three character code identifier
used internationally by banks, The complete list of currencies and the
country or currency zone in which it is used is given in the IFC Model
Reference (Volume 3 of the IFC Specification documents).

Currency is a mandatory attribute; that is, it must be asserted.

5.3.1.4. ModifierBasis

Cost modifiers may be applied to an IfcCost on either a running or a static basis and this attribute enables the
selection of which to adopt.

The terms ‘Running’ and ‘Static’ identify how values that are given as cost modifiers should be applied.
Consider the example of an item that has a base cost value of $100 and that has cost modifier values as
follows:

• A 10% addition should be applied to values given in the price list issued on June 1st to reflect changes
in the price of raw materials that cannot be absorbed by the manufacturer in the price.

But we buy them for $72 each.
So the difference covers my
overheads and PROFIT!!!
But I won't tell anybody.

The project is in Zarkovia.
Got to price it in Zarkovian
Zurgles. That's ZZG isn't it?

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 54 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

• A trade discount of 30% is applicable to all values given in the
price list for customers who hold a trade account with the
manufacturer.

• A further rebate of 10% is given to the purchasing
organization based on the fact that it buys very large quantities
of the manufacturers products each year and they are
purchased on a predictable basis that enables the
manufacturer to plan its production volumes effectively.

• An addition of a fixed amount of $10 is applicable to the item
ordered to cover the cost of transportation to a remote site.

In static modification, each modifier is applied to the base cost value
and the order in which the modifiers are applied is not significant.
Thus, the final cost value is developed using static modification by:

• Apply the 10% addition to $100 = +$
10.00

• Apply the 30% discount to $100 = -$ 30.00
• Apply the 10% rebate to $100 = - $ 10.00
• Apply the transportation cost = +$ 10.00

• Total value of modifications = - $ 20.00
• Add base cost value = $100.00

• Total cost of item (final cost) = $ 80.00

Now consider the same item but with each of the modifiers applied on a running basis. In this case, the order
in which modifier values are assigned may be significant so, in repeating the above example, it will be
assumed that the values are to be applied in the order given:

1. Apply the 10% addition to $100 (+$10.00) = $110.00
2. Apply the 30% discount to $110 (-$33.00) = $ 77.00
3. Apply the 10% rebate to $77 (-$7.70) = $ 69.30
4. Apply the transportation cost (+$10.00) = $ 79.30

5. Total cost of item (final cost) = $ 79.30

Now consider the same item with the modifiers applied on a running basis but with the fixed transportation
cost applied before the percentage items:

1. Apply the transportation cost (+$10.00) = $110.00
2. Apply the 10% addition to $110 (+$11.00) = $121.00
3. Apply the 30% discount to $121 (-$36.30) = $ 84.70
4. Apply the 10% rebate to $84.70 (-$8.47) = $ 69.30

5. Total cost of item (final cost) = $ 76.23

Modifiers can only be applied on a single basis; it is not possible to mix the application of running and static
modifiers to a single cost at this stage.

ModifierBasis is an optional attribute; that is, it does not have to be asserted.

5.3.1.5. CostType

A cost may be designated as being of a particular type. This enables the potential for filtering of costs and
their collection into defined categories within a cost schedule. A range of cost types is provided, one of which
must be selected from the list to assign to the cost value.

I know you get a discount and a
rebate. But you have to increase

the list price first.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 55

Copyright  International Alliance for Interoperability - 1996-1999

LaborCost The cost of human resources.
PlantCost The cost for items of equipment rented or

purchased for use on this project but which will not
be embodied within the final product.

MaterialCost The cost of materials purchased (or sold)
SubContractCost The cost of a defined work task or group of work

tasks that is carried out by another organization
acting on behalf of the organization to which the
work is contracted.

PreliminariesCost Costs that describe work associated with a project
but which do not form part of the completed
product e.g. temporary construction works.

PrimeCost A cost which is an amount to be included for work
or services to be executed by a nominated actor.

BillOfMaterialsCost A composite cost which is to be included within a formal bill of materials.
ProvisionalCost A cost that is included for work that is foreseen but cannot be accurately specified at

the time of costing.

CostType is a mandatory attribute; that is, it must be asserted.

5.3.1.6. CostDate

Sets a value for the date on which the cost was assigned. Any of the
allowable formats for date defined within the IfcDateTimeSelect class
may be used including. In practice, the selection will be either a
calendar date (IfcCalendarDate) without the inclusion of time or date
and time (IfcDateTime) which aloows both date and time to be
specified. The selection of time only through the selection capability is
not expected to be used and this is indicated by the attribute name.

The actual value to be assigned to this attribute is obtained using the
IfcDateTimeSelect class that is described within the IfcDateTime
schema.

CostDate is an optional attribute; that is, it does not have to be
asserted.

5.3.1.7. UnitCostBasis

Allows assignment of the number and unit of measure on which the unit
cost is based. As well as the normally expected units of measure such as
length, area, volume etc., costs may be based on units of measure which
need to be defined e.g. sack, drum, pallet etc.

Unit costs may be based on quantities greater (or lesser) than a unitary
value of the basis measure. For instance, timber may have a unit cost
rate per X metres where X > 1; similarly for cable, piping and many other
items.

The basis number may be either an integer or a real value.

The actual value to be assigned to this attribute is obtained using the
IfcMeasureWithUnit class that is described within the
IfcMeasureResource schema.

UnitCostBasis is a mandatory attribute; that is, it must be asserted.

5.3.1.8. CostComponents

As an item may be an assembly or a group of smaller items that are considered to act together, so a cost for
an item may be determined by the cost of the assembly or group may be defined by the cost of the

So that's $160 material
cost for gold bricks.

And $30 labor cost to build.

And that's the price of
gold bricks on May 1st.

It could go up again.

What!!!
You only sell them

10 at a time.

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 56 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

component parts. Alternatively, if the cost is to be included within a bill and established as a made up rate, the
individual costs may also be determined.

The CostComponents attribute allows for the components of a cost to be established recursively. That is, an
IfcCost object may have components that are other IfcCost objects. For instance, a fan is an assembly of an
impeller and one or more motors together with the drive mechanisms (such as fan belts) and the work task
that assembles the component parts into the completed fan unit. Whilst the fan has a cost, it may be derived
by adding together the cost of the component parts. The identification of the component parts and their costs
may be particularly useful during the operational stage of a project when a motor or drive mechanism needs
to be replaced. Since it may have a different cost to the original item,
the asset value of the fan (also expressed as an IfcCost) will
change.

An IfcCost may be declared as having no components, one
component or many components.

Equally important is the fact that an individual component should be
able to identify the assembly or group to which it belongs. This
should be done within the application since it will not be expressed
within a data exchange file.

The actual value to be assigned to this attribute is obtained using
the IfcMeasureWithUnit class that is described within the
IfcMeasureResource schema.

CostComponents is a list that can contain zero, one or many
references to other IfcCost instances; that is, it must be asserted
even if there are no CostComponents.

5.3.1.9. CostModifiers

Identifies the cost modifiers that will be applied to an IfcCost. Since IfcCostModifier is a separate class, each
cost modifier will be expressed as a reference to an instance of the IfcCostModifier class.

CostModifiers is a list that can contain zero, one or many references to other IfcCostModifier instances; that
is, it must be asserted even if there are no cost modifiers.

5.3.2. IfcCostModifier

Identifies all of the values that may be used to modify a cost including items such as:
• Trade discount
• Volume purchase rebate
• Change in list price
• Small purchase charge
• Delivery charge
• Other additions and deductions as identified by purpose

5.3.2.1. Purpose

Identifies the purpose for which an individual cost modifier is applied.
It is important to identify the purpose to ensure that the same item
does not get included in the list of cost modifiers applied to an IfcCost
more than once, and equally to ensure that no cost modifier is

IfcCostModifierIfcCostOperatorEnum

STRING

STRING

Purpose

CostValue

CostOperator

What we sell are brick units.
That's the brick at $140.

Fixings are $15.
Polish is another $5.

You'll need to buy more polish.

So that's 10% on list price.
I get 50% discount.

AND a 10% volume rebate?

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 57

Copyright  International Alliance for Interoperability - 1996-1999

missed. Therefore, there should be no duplication of the combination of cost modifier purpose and cost value
within the list.

This is important to note since, for items with fast changing costs, changes in price list can occur frequently. It
is not unknown for an addition to be quoted as (say) +25%, +10% meaning that prices should be increased by
25% as the first operation and then by 10% as a second operation (giving a 37.5% price list increase in total
on a running calculation basis). Similarly, more than one trade discount may be applicable. It is easier to
assign a unique to purpose of the cost modifier since there could easily be duplication of the value assigned
to cost value (for instance, discounts of 5% and then a rebate of 5%).

Purpose is a mandatory attribute; that is, it must be asserted.

5.3.2.2. CostValue

Defines the numerical value that is assigned to a cost modifier.

CostValue is a mandatory attribute; that is, it must be asserted.

5.3.2.3. CostOperator

A mathematical operator that determines how the cost modifier is to be applied to the cost to vary its value.
The range of operators that can apply are add, subtract and multiply and each operator can apply to an actual
value (e.g. $56.50) or to a percentage value (e.g. 56.5%). These are contained within an enumerated list from
which one must be selected. The list contains:

• AddValue
• SubstractValue
• MultiplyValue
• AddPercent
• SubstractPercent
• MultiplyPercent

CostOperator is a mandatory attribute; that is, it must be asserted.

NOTE: The value assigned to a cost operator tells receiving software
how to handle the value of the cost modifier. The model does not actually carry out any operations on
the cost modifier itself.

5.4. IfcDateTimeResource
The IfcDateTimeResource schema provides the resources that enable the assignment of dates and times as
attrbutes of classes within the IFC model.

The schema is based on that provided for Date and Time definition within ISO 10303 part 41 but is more
restricted in the classes that it makes available. These classes have been selected based on normal usage
within the AEC/FM industry. Some additional features have been provided to support domain requirements
that do or will exist within IFC support for AEC/FM business processes. In particular, support is provided for a
time offset for daylight saving time that varies local time by an amount that is offset from the standard
variation from Greenwich Mean Time (GMT).

5.4.1. IfcDateTimeSelect
Allows the selection of the form of date and/or time that will be used. There are three possible selections that
can be made:

• Date only expressed as a calendar date
• Date and time
• Time only expressed as the local time at the place of interest

And I add or subtract
each value in turn

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 58 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

Only one of these classes may be selected and it is the selection that is instantiated in a data exchange file
and not the SELECT class itself.

5.4.2. IfcCalendarDate

This allows the date to be defined in year, month date format.

5.4.2.1. Year Component

This is an integer value for the year that should use the full year number rather than an abbreviated date.
Because month and day components are identified according to the Julian form, it is anticipated that yea
components will also be identified as Julian years.

YearComponent is a mandatory attribute; that is, it must be asserted.

5.4.2.2. Month Component

This is an integer value for the year starting from January = 1 to
December = 12. The value assigned to the month component is
constrained so that it cannot be greater than 12 or less than 1. Note
that months are identified by the Julian form.

MonthComponent is a mandatory attribute; that is, it must be
asserted.

5.4.2.3. Day Component

This is an integer value for the day number within a month. Its value
will revert to 1 at the beginning of each new month. A function
constrains the maximum value of the day number according to the
setting of the month so that a value of 30 is assigned to April (4),
June (6), September (9) and November (11). A value of 28 is
assigned to February (2) except in the case of every 4th year (leap
year) when the maximum value is changed to 29. All other months
are allowed a maximum value of 31.

DayComponent is a mandatory attribute; that is, it must be asserted.

IfcDateTime

IfcDateTimeSelect

IfcCalendarDate IfcLocalTime

IfcCalendarDate

IfcMonthInYearNumber

IfcDayInMonthNumber

IfcYearNumber

MonthComponent

DayComponent

YearComponent

DataType = INTEGER

DataType = INTEGER

DataType = INTEGER

Mon SunSatFriThuWedTue

3

24

17

10

25

18
11

4

26

19
12

5
13

27

20

6

21

28

14

7

30

23
16

9

29

22

15
8

21

31

1999 May = Month 5

Year Component
Month

Component

Day Component

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 59

Copyright  International Alliance for Interoperability - 1996-1999

5.4.3. IfcLocalTime
Allows the assignment of time at the place of interest.

5.4.3.1. DaylightSavingOffset

This is the integer amount of time that a clock is moved forward during the
summer months to provide additional daylight. Conventionally, the value of
the daylight saving offset is one hour. However, in various parts of the world,
double daylight saving is used. In this case, the value of daylight saving
offset is two hours. A constraint is placed on daylight saving offset so that 2
is the maximum value that is allowed.

DaylightSavingOffset is an optional attribute; that is, it does not have to be
asserted.

5.4.3.2. HourComponent

This is the value of the hour in the day to be assigned. It is an integer value
with a minimum value of 0 and a maximum value of 23 determined by the 24
hour clock.

HourComponent is a mandatory attribute; that is, it must be asserted.

5.4.3.3. MinuteComponent

This is the value of the minute in an hour to be assigned. It is an integer
value with a minimum value of 0 and a maximum value of 59 determined by
the 24-hour clock.

MinuteComponent is an optional attribute; that is, it does not have to be
asserted.

5.4.3.4. SecondComponent

This is the value of the second within a minute to be assigned. It is a real
value that allows fractions of a second to be assigned. It is constrained so
that it must be less than 60.00.

SecondComponent is an optional attribute; that is, it does not have to be
asserted.

5.4.3.5. Zone

IfcLocalTime

IfcDaylightSavingNumber

IfcSecondInMinute

IfcHourInDay

DaylightSavingOffset

SecondComponent

HourComponent

DataType = INTEGER

DataType = INTEGER

DataType = REAL

IfcMinuteInHour
MinuteComponent

DataType = INTEGER

IfcCoordinatedUniversalTimeOffset

Zone

0/24 1
2

3

4

5

6

7

8

9

10
111213

14

15

16

17

18

19

20

21

22
23

DaylightSavingOffset

45

0/24 1
2

3

4

5

6

7

8

9

10
111213

14

15

16

17

18

19

20

21

22
23

5

10

15

20

25
30

35

55

40

50

0

Hour Component

Minute Component

Second Component

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 60 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

Identifies the time zone in which the local time is located by reference to the number of hours ahead of or
behind Greenwich Mean Time (see IfcCoordinatedUniversalTimeOffset).

Zone is an optional attribute; that is, it does not have to be asserted. This allows for communication of the
local time between organizations situated in the same time zone.

5.4.4. IfcCoordinatedUniversalTimeOffset
Allows the time zone in which a place of interest is located to be located relative to the Greenwich Meridian
(line of 0 degrees longitude).

5.4.4.1. HourOffset

An integer measure of the number of hours offset from Greenwich
Mean Time.

HourOffset is a mandatory attribute; that is, it must be asserted.

5.4.4.2. MinuteOffset

An integer measure of the number of hours offset from Greenwich
Mean Time.

MinuteOffset is an optional attribute; that is, it does not have to be
asserted.

5.4.4.3. Sense

An enumerated list that determines the value of hours and minutes offset is ahead of or behind Greenwich
Mean Time. There are two possible values; ‘ahead’ or ‘beind’.

Sense is a mandatory attribute; that is, it must be asserted.

5.4.5. IfcDateAndTime
Allows both date and time to be assigned.

5.4.5.1. DateComponent

References an instance of the IfcCalendarDate class (see above)

5.4.5.2. TimeComponent

References an instance of the IfcLocalTime class (see above)

5.5. IfcDocumentResource
This schema provides resource objects that support relationships between IFC model objects (products,
processes, controls, etc.) and documents. Since the norm in information exchange in the AEC industry is
through documents, this is a very important resource.

5.5.1. IfcDocumentType
This object defines a particular 'type' of document (for which there may be many references in a model). It
defines the following attributes:

• FileExtension:STRING - MS Windows type file extension. Example: .DOC, .XLS, .VSD, .DWG

IfcDateAndTimeIfcCalendarDate IfcLocalTime
TimeComponentDateComponent

0/24 1
2

3

4

5

6

7

8

9

10
111213

14

15

16

17

18

19

20

21

22
23

HourOffset=6

Greenwich

Local

Sense=Ahead

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 61

Copyright  International Alliance for Interoperability - 1996-1999

• Description:STRING - end user description for this file type. Example: MS Word document, MS Excel
document, Visio drawing, AutoCAD drawing

• EditingApplications:SET [0:?] OF IfcApplication - Set of references to defined applications that have
registered the ability to edit this document type. Example: [.DOC] MS Word, Word Perfect; [.DWG]
AutoCAD, IntelliCAD

5.5.2. IfcDocumentReference
This object provides reference information about a document. It is related to an IFC model object through the
ReferenceDocuments attribute on IfcObject in the Kernel (supertype for most objects in the model). It defines
the following attributes:

• DocumentOwner:IfcActorSelect - project team member responsible for this document. Example: Fred
Jones

• PreparedBy:LIST [0:?] OFIfcActorSelect - list of project team members who developed the document.
Example: Fred Jones, Sally Smart

• Editors:LIST [0:?] OFIfcActorSelect - list of the project team members with permission to edit this
document. Example: Fred Jones, Sally Smart, George Winston

• DocumentName:STRING - end user name for the document. Example: "First Floor Plan"
• Location:STRING - where this document is located. Example:

"abc.ftp://Projects/Project_123/BackgroundDrawings"
• DocumentSectionReference:STRING - "grid reference B-12"
• Revision:STRING - revision number for the document. Example: "SchematicDesign_draft2"
• DocumentDescription:STRING - end user description that compliments the document name. Example:

"Standard first floor plan for this project."
• DocumentScope:STRING - statement of document scope. Example: "Limited plan represenation.

More detail to follow in design development and construction document phases"
• DocumentPurpose:STRING - statement of purpose for this document. Example: "Provides plan

background for architectural, reflected ceiling, HVAC, structural and electrical plans."
• DocumentIntendedUse:STRING - statement of intended document use. Example: "Internal and client

presentation only. Not intended for permit or construction"

5.6. IfcGeometryResource

5.6.1. Geometry

5.6.1.1. Introduction

The IFC Object Model includes geometry definitions for multiple purposes. In general, we have chosen to
use an implicit geometry definition of the physical shape of an object. In addition to this, applications may
optionally associate explicit geometry representations using an adapted subset of the entities defined in
STEP Integrated Resource part 42 for Geometric and Topological Representation (see references).

In order to allow for the coordination of multiple geometry representations, we have included the concept of a
Reference Geometry. In this release, we have chosen to limit the use of reference geometry to a single
placement entity (location and orientation), adapted from STEP part 42. There is a single placement defined
for any object. It is 'used by' the Bounding Box, Implicit and optional Explicit geometry representations.

Finally, in cases where specific geometry definition are not provided, a general purpose BoundingBox
representation is available for use with any physical object. This BoundingBox can thus be used by any
application as the minimal geometry representation for any object, even if a more specific representation is
available. The BoundingBox representation has been made mandatory for any element which has geometry
so that all IFC applications can rely on it to provide location, orientation and extent.

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 62 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

5.6.1.2. Scope

This section defines placement, minimal BoundingBox geometry, Implicit geometry (called Attribute Driven or
AttDriven geometry in this release) and Explicit geometry resources used to define the shape and spatial
arrangement of IFC project elements.

Such information can be used at all stages in the life-cycle of a building including: design process,
construction, facilities management and operations. The purpose of this section is to enable software
applications in all building and construction industry sectors to exchange building element shape and spatial
arrangement information.

The following are within the scope of this part of the specifications:

• Implicit (Attribute Driven) representation of the 3D shape of building elements
• The spatial arrangement of building elements that comprise the assembled building

The following are outside of the scope of this part of the specifications:

• Symbolic representations
• The contents of building standards
• Specifications of properties of building elements, including material composition
• Association of properties and classification information to building elements
• The assembly process, joining methods, and detailed connectivity of building elements
• Approval, revision, versioning and design change histories

5.6.1.3. Definitions and Abbreviations

The following definitions apply to this section:

• explicit geometry: A geometry representation void of semantic meaning for its parts. Pure geometry
definition in terms of points, curves, surfaces and solid primitives. Examples: a cube could be defined in
terms of eight points, 12 edge curves, 6 bounded surfaces or some combination.

• implicit geometry or Attribute Driven: A geometric representation driven by attributes. Such a
representation will have few (if any) constraints. For example, a cube can be defined using a placement
entity (see placement entity definition) and a length attribute (aligned with the X-Axis of the local coordinate
system), a width attribute (aligned with the Y-Axis of the local coordinate system) and a height attribute
(aligned with the Z-Axis of the local coordinate system) -- length, width and height being the "driving"
attributes.

• parametric geometry or constrained geometry: A geometry representation driven by functions; complex
geometry reduced to simple parameters which may include arbitrarily complex (external) constraints
between objects. Parametric geometry can be defined using either implicit or explicit geometry methods.
For example, a cube defined using implicit geometry would have constraints applied to the length, width, or
height attributes based upon adjacent objects or design criteria.

• reference geometry and placement entities: Defines the most fundamental elements of the geometry
for an object - which allow coordination of multiple geometry representations (e.g. plan view, section view
and 3d shape represenations). An example of a reference geometry is an oriented vertex, which consists
of a 3D Cartesian point placement entity and a direction placement entity, which specify a local coordinate
system fixed at a particular location in Cartesian space. Refer to the sections titled Reference Geometry
and the Bounding Box and Geometric Primitives for IFC Geometry for more information on reference
geometry and placement entities.

• bounding box: Defines the extents of the shape geometry for an object. A bounding box is an octahedral
boundary element defined by its length attribute (aligned with the X-Axis of the local coordinate system),
width attribute (aligned with the Y-Axis of the local coordinate system) and a height attribute (aligned with
the Z-Axis of the local coordinate system).

The following abbreviations may be used in this section:

• B-rep Boundary representation
• CSG Constructive Solid Geometry

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 63

Copyright  International Alliance for Interoperability - 1996-1999

• LCS Local Coordinate System

5.6.1.4. Reference Geometry and the Bounding Box

Reference geometry is the mechanism used to coordinate multiple
geometric representations. For this release of IFC, reference
geometry is limited to placement of an element. This placement is
always relative to a reference element, which enables relative
placement.

Over time, IFC objects that have geometry must be able to
accommodate multiple geometric representations or views. For
example, an object may have a different representation depending
upon the phase of the project. Similarly, the architect may choose to
view an object differently from an HVAC engineer. These multiple
representations of objects will all utilize the same reference
geometry. If an application changes the reference geometry, then
other applications are responsible for updating their views to reflect
these changes.

One of the consequences of a single reference geometry with multiple shape representations that reference it
is that the local coordinate systems of the different shape representations are consistent. Each physical IFC
object with different shape representations has one positioning entity which is valid for all views of this IFC
object. From an implementers point of view, this means that the same transformation matrix is applied to all
shape representations related to a given object. This mechanism is applied whether a shape representation
is defined implicitly, explicitly or parametrically.

Each object that has a geometric representation will carry both a reference
geometry (in this Release - limited to placement) and a bounding box.

There are three general types of reference geometry: placement, open path,
and face. In IFC release 1, we have only used placement. Future releases
of IFC will make use of other forms of reference geometry.

The IfcPlacement entity is defined by a 3D cartesian_point entity which fixes
the location of the object’s geometry representation in 3D space. This point
is defined relative to the placement of a reference entity in all cases except
IfcSite, which is defined relative to a reference global position defined by
longitude, latitude and elevation. The reference entity can be any other
project object. This allows users and applications to arrange relative
placements that will simply an modifications to a related group. For
example, if the contents of a Space are placed relative to that Space, moving the Space will automatically
result in a like movement of the contents.

IfcPlacement also includes one or more direction entities which define an orientation about it’s location. The
combination of this location and orientation defines a local coordinate system for the object. This local
coordinate system is used to define the shape representations of the object, and all geometric primitive
references will be relative to this local coordinate system.

Figure 5-1: IfcSite object

Figure 5-2: Reference
Geometry entity

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 64 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

Every object with geometry are required to have a minimum
default representation of a bounding box. The bounding box
is the one representation that will always exist and be
available. Even if more specific representations are
associated with an object, the BoundingBox should be
updated and made consistent so that applications which
may only want this minimal representation will have a valid
view of the object geometry.

The bounding box describes the object’s extents with a
length attribute (associated with the X-Axis of the reference
geometry’s LCS), width attribute (associated with the Y-Axis
of the reference geometry’s LCS) and a height attribute
(associated with the Z-Axis of the reference geometry’s
LCS).

Please see the Implicit geometry example for the Light Post below for an example definition of a bounding
box.

5.6.1.5. Implicit Geometry Representation

5.6.1.5.1. Introduction

As described in the introduction to this section, the preferred definition of geometry used to represent the
shape of IFC objects will use implicit (or Attribute Driven) geometry. This can be thought of a "simple
parametric" geometry.

Few projects to date have attempted to exchange geometry information using this approach. A notable
exception was the NICC project in Sweden. In studying the projects which have attempted to use implicit
geometry and in analyzing the way geometry can be created by most CAD systems, we have observed two
consistent themes:

1. Use of a set of predefined geometry primitives

2. Use of three geometry creation methods for defining geometry implicitly:

• extrusion: surfaces created through extrusion of a profile along a path
• revolution: surfaces created through rotating a profile about an axis
• composition: solids or surfaces created through the composition of multiple sub-parts

Each of these is an optimal approach for describing (and creating) certain types of geometry representations.
Together, these primitives and methods for generating more complex geometry provide an adequate toolset
for describing the geometry of any IFC object type in AEC.

In order to define the geometry of IFC objects parametrically, we will:

1. parameterize a set of geometry primitives widely supported in the industry

2. propose a notation system which supports use of these primitives in extrusion, revolution, and
composition.

In the next section we will introduce use of this notation system. The sample definition includes three parts:

1. Implicit Geometry placement - as described in the section above

2. BoundingBox geometry - as described in the section above

3. Implicit geometry definition - using primitives, extrusion, revolution and composition

It is very important to note that the “simple parametric” approach that we are using to define implicit geometry
means that the information to be stored in the IFC Project Model is the parameters for the construction of the
geometry, NOT THE RESULTING GEOMETRY ITSELF. This means that an application which supports IFC
must construct the geometry representation that is appropriate (for that application) using these parameters
and the definitions in the IFC Object Model specification.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 65

Copyright  International Alliance for Interoperability - 1996-1999

The approach used here makes use of concepts first introduced in the NICC project in Sweden and the High
Level Interface (HLI) defined by IEZ.

5.6.1.5.2. Implicit geometry representation classes

We have included 3 general groups of explicit geometry representation classes. These are used in the
definition of a product shape using implicit geometry.

• Attribute driven profiles
• Attribute driven extruded solids
• Attribute driven revolved solids

5.6.1.6. Explicit Geometry Representation

5.6.1.6.1. Introduction

In the event that the Implicit geometry shape, as defined in the previous section, is not adequate for some
applications' needs, an optional explicit shape definition may also be attached to an IFC object.

We have adapted parts of STEP part 42 to define the Explicit Geometry sections of the geometry resource.

5.6.1.6.2. Explicit geometry representation classes

We have included 4 general groups of explicit geometry representation classes. These are used in the
definition of a product shape using explicit geometry

• Component Shape Representation
• Site Shape Representation
• Space Shape Representation
• Bounding Box

5.6.1.7. References

ISO 10303-42:1995, Industrial automation systems and integration - Product data representation and
exchange - Part 42: Integrated Generic Resources: Geometric and Topological Representation.

Speedikon High Level Interface Version 3.0: The Interface of IEZ AG Bensheim (1995), IEZ Bensheim.

Tarandi, V (1993), Object oriented communication with NICC (Neutral Intelligent CAD Communication), in
Management of Information Technology for Construction, World Scientific & Global Publication Services,
1993, Singapore, pp. 517-527.

5.7. IfcMaterialResource
This schema handles the storage of materials and their properties. These are stored centrally and referenced
from objects rather than each object having to store full details about the material(s) from which it is made.

5.7.1. Materials
A single homogenous material is stored in IfcMaterial. The IfcMaterial class is defined so that properties can
be assigned to a material as needed – the definition is extensible within a computer application.

5.7.2. Material Layers
The properties of the materials within assemblies also need to be modeled. For example, the thermal
transmission of a wall assembly is dependent on the properties of the materials and the thicknesses of the

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 66 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

layers of each material layer. This layered construction is handled by IfcMaterialLayerSet which consists of a
list of material layers, the material from which each layer is made and the thickness of each layer. These are
stored as an offset from a “base line” within the assembly. The IfcMaterialLayerSet can then be positioned
with respect to an external base line through IfcMaterialLayerSetUsage. This allows a single definition to be
used for cavity brick construction, for example, when separate wall elements are offset from grid lines by
different distances. The total thickness of an IfcMaterialLayerSet is calculated using the
IfcMLSTotalThickness fuction.

5.7.3. Material Lists
The final materials usage scenario that is supported caters for the case where there is an assembly in which
there is no obvious “structure” to the information. In a facilities management application, there may be a need
to store the information that a chair has a chromed frame and fabric upholstery. A list of materials that exist in
any component is stored in IfcMaterialList.

5.7.4. Material Finishes
The IFC model distinguishes between two types of finishes – “integral” finishes and applied finishes. Integral
finishes are those finishes obtained by treating a material at its surface. This covers the various off-form
finishes that can be obtaining using exposed concrete elements. It also covers anodized finishes to aluminum
and other finishing processes that permanently change the surface of a material. Lists of finishes that are
appropriate can be stored against particular materials.

Applied finishes, such as paint, are treated as separate layers at the element level.

5.8. IfcMeasure Resource

5.8.1. Units of Measure

5.8.1.1. Introduction

This section explains the approach to representing Units of Measure in this release of IFC.

5.8.1.2. Requirements

The following are noted requirements for Units of Measure in IFC. While not all of these will be satisfied in
this release of IFC, the requirements are noted here and should be addressed over time in future IFC
releases.

5.8.1.2.1. Quantities and Units of Measure

The schema should capture all information required to unambiguously translate dimensioned values from one
units system to another.

The schema should not constrain dimensioned values to be from a single standard units system.

It is not required that the schema capture the specific scale of a unit as entered. For example, an entry of
mm/s may be captured in terms of m/s. All scaling of dimensioned values for display purposes is up to the
application. For example, a value of 1E3 m/s can be displayed as 1 km/s. All decisions as to how to display
a value with units is made by the application and is not in the IFC scope.

The schema allows data required for an application to apply scaling to present the information with different
units multipliers to be captured in the exchange data set.

The standard provides a means to capture a measurement value and its unit of measure.

5.8.1.2.2. Currency

Provides for capturing monetary values in terms of any defined unit of currency specified by ISO 4217.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 67

Copyright  International Alliance for Interoperability - 1996-1999

Provides for capturing the time of effectivity of all monetary values. This may be captured for a model as
whole. The time of effectivity represents the time at which all monetary values are defined. This permits
conversion between currency systems based on the exchange rate in effect at the time of effectivity.

Conversions between currency units are not required to be meaningful. All interpretations of such converted
values are the responsibility of the converting application.

5.8.1.2.3. Tolerances

The schema should provide for capture of a specified tolerance on any dimensioned value.

The schema supports expressing tolerances as a range of allowed values, a nominal value with allowed
range, a nominal value with tolerance range specified in terms of a relative offset from the nominal value, and
a nominal value with tolerance specified as a ratio of the nominal value.

Note: this requirement is not satisfied in the current release of IFC.

5.8.1.2.4. Import/Export

The schema allows translation-free exchange between applications working in the same units system.

A conforming application is required only to write an exchange file based on any of the defined IFC standard
units.

5.8.1.3. Current Approaches

5.8.1.3.1. ISO 10303-41

Part 41 is one of the parts of the STEP Integrated Resources. Integrated resources are the fundamental
semantics with which product data are exchanged. Domain-specific parts (e.g., Part 225) define domain
semantics in an Application Reference Model (ARM), then define a mapping from the domain semantics to
the integrated resources in an Application Interpreted Model (AIM). This must be a conformal mapping
allowing unambiguous mapping from ARM to integrated resources and vice-versa.

 Quantities and Units of Measure
The Part 41 approach is based on the use of ISO 1000 units as the fundamental units system, but allows
great flexibility in allowing parts or applications to define additional units. These units may be:

• a composition of base SI units (e.g., meters/second),
• scaled from other units (e.g. defining inches as 25.4 mm),
• unrelated to the SI system (e.g., a unit named “parts” that would have meaning only in the ARM

context) .

SI and SI-derived units are modeled with a unit vector that represents the exponent of the seven basic
dimensions a unit may have (i.e., length, mass, time, current, temperature, substance, and luminous
intensity). The standard allows the exponents to be real values. So, for example, a value can be expressed

in units of m1.5/s3.777. Real values may been chosen as the most general, but ARMs can restrict values to
integer as necessary.

The schema allows arbitrarily complex derivations. For example, an application can define a unit called “foo”

as m/s2, a unit called “bar” as foo2/s, a unit called “baz” as foo3/bar2, ad infinitum. This allows any arbitrary
units to be so defined. Note that these derived units are not directly referenced back to the fundamental
dimension vector. This permits the recovery of the name of the input unit, perhaps capturing some essence
of intent.

Conversion units allow scaling only. This may not support the mapping of one unit to another where a
constant offset is required (e.g., degrees Fahrenheit mapped to degrees Celsius).

The entity global_unit_assigned_context establishes a units system (a set of units) that is then used within a
specific context. An ARM would define this context at appropriate points. An ARM can decide to have a
single context, or can arrange nested contexts within some scope hierarchy. The context is a set of units and

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 68 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

can include any mix of SI, SI-derived, converted, and context-dependent units. A receiving application is be
required to be capable of recognizing all possible units and performing conversions as required between
them. Alternatively, an ARM can define rules on the context so that a constrained set of predefined units is
all that can be exchanged.

 Currency
This standard does not define any standard currency units.

 Tolerances
This standard does not address tolerances on values.

 Import/Export
This standard does not apply any a-priori constraints on the units that an exchange data set may be conveyed
in. ARMs are presumably responsible for defining these constraints.

5.8.1.4. Units in IFC

5.8.1.4.1. Quantities and Units of Measure

The IFC measure resource contains the same (or similar) semantics as Part 41.

Domain model developers may define specialized subtypes of IfcMeasureWithUnit for each standard quantity
in the IFC domain (i.e., enumerate the quantities of the IFC domain). This can be done by defining
constraints on the dimension vector to ensure consistency. For example:

ENTITY MassFlowrate

SUBTYPE OF (IfcMeasureWithUnit);

WHERE

wh1: derive_IfcDimensionalExponents

(SELF\IfcMeasureWithUnit.UnitComponent)

= IfcDimensionalExponents(0,1,-1,0,0,0,0);

END_ENTITY;

Attribute types in IFC domain schemata are defined using these types. For example:

ENTITY PumpSpecification;

MaximumFlowrate : IfcMassFlowrate;

END_ENTITY;

Within an application that defines such subtypes, any defined unit can be assigned to the value instance.
The “where” rule ensures that any unit assigned to the value is a mass flow rate (mass/time) and allows the
exchange data set to be checked for consistency. This release of IFC does not include definition of any such
specialized units of measure. However, this will be considered in future releases.

5.8.1.4.2. Currency
TYPE IfcCurrencyTypeEnum = ENUMERATION OF (

 AED, AES, ATS, AUD, BBD, BEG, BGL, BHD, BMD,
 BND, BRL, BSD, BWP, BZD, CAD, CBD, CHF, CLP,
 CNY, CYS, CZK, DDP, DEM, DKK, EGL, EST, FAK,
 FIM, FJD, FKP, FRF, GBP, GIP, GMD, GRX, HKD,
 HUF, ICK, IDR, ILS, INR, IRP, ITL, JMD, JOD,
 JPY, KES, KRW, KWD, KYD, LKR, LUF, MTL, MUR,
 MXN, MYR, NLG, NZD, OMR, PGK, PHP, PKR, PLN,
 PTN, QAR, RUR, SAR, SCR, SEK, SGD, SKP, THB,
 TRL, TTD, TWD, USD, VEB, VND, XEU, ZAR, ZWD);

END_TYPE;

The Part 41 unit selection type is extended to include currency_unit.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 69

Copyright  International Alliance for Interoperability - 1996-1999

Note that the above does not allow currency units to be used in derivations. It also does not allow currency
units to be composed with other units.

5.8.1.4.3. Tolerances

Tolerances on values are not supported in this release of IFC.

5.8.1.4.4. Import/Export

Applications can exchange data in any defined set of units defined in accordance with the above units
schema.

Applications are required to include the definition of all units used in the exchange data in the exchanged data
set using the UnitsInContext attribute on the IfcProject object (of type IfcUnitAssignment).

Writing applications may write data sets using the same units used in the application.

Reading applications can examine the defined units set and determine translation requirements. The unit
definitions allow unambiguous translation. If the reading application uses the same units as the writer no
translation will be required, even if the units are not SI units.

5.9. IfcPropertyResource
This schema defines the objects that can be included as properties in an IfcPropertySet (defined in the
IfcKernel schema). The following property objects are defined:

5.9.1. Property Objects

IfcProperty
The abstract supertype for all property objects. Provides the following attribute (inherited by all types below):

• Name:STRING - Name for this property. Remember, since these properties are defined at runtime,
there is no statically defined name. The name is provided by the end user or application at runtime.
Example: "PropertyX"

IfcSimpleProperty
This is the most used property object. This object type allows runtime definition of single value properties for
any type of measure value (see the IfcMeasure schema).

• ValueComponent:IfcMeasureValue - The value for this property occurance. Examples:
[IfclengthMeasure] 45 M ; [IfcReal] 845.69 ; [IfcInteger] 126 ; [IfcString] "Mary had a little lamb"

IfcSimplePropertyWithUnit
Allows runtime specification of single value properties and an occurance specific unit. Values can be any
type of measure value and an associated unit type (see the IfcMeasure schema).

• ValueWithUnit:IfcMeasureWithUnit - The value and unit type for this property occurance. Examples:
[MaximumAirFlowrate: VolumetricFlowrateUnit] 100 Cubic Feet per minute ; [CleanPressureDrop:
PressureUnit] 10 pounds per square inch.

IfcEnumeratedProperty
Allows runtime definition of an enumeration and enumerated value occurrences. An associated object type,
IfcEnumeration, defines the enumerated values.

• EnumerationReference:IfcEnumeration - an object that contains the runtime defined list of enumeration
(STRING) values. Example: (value1, value2, value3).

• EnumerationIndex - index for the enumeration value for this object occurrence. Example: 2 (value2)

IfcLibrary Reference

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 70 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

Allows runtime definition of a reference to to a library. As associated object type defines the library.
• ReferencedLibrary:IfcLibrary - an object that defines the library. Library information includes: Name,

Location, Version, Publisher and VersionDate.
• ReferencedItem:STRING - descriptor for the item in the library being referenced.

IfcObjectReference
Allows runtime definition of relationships to other objects. A number of resource object types are named in a
select type. Objects defined in upper layers of the model can be referenced by ID (GUID).

• ObjectReference:IfcObjectReferenceSelect - a select type that allows this reference to address many
different types of objects. See reference documentation for types included in the select type.

IfcPropertyList
Allows runtime definition of a list of property values. As with all object types in this schema, this list can then
be included in an IfcPropertySet.

• UserMin:Integer - Minimum number of values in the list - set by the end user or application. Example: 2
• Max:Integer - Maximum number of values in the list - set by the end user or application. Example: 24
• (Derived) Min:Integer - This value is set by a function to the UserMin value or to zero in the case that

the UserMin value has not been set. Example: 0 (in the case where the optional UserMin is not set)
• HasProperties:LIST [Min:Max] OF IfcProperty - the list of properties to be included in this list. Each of

these can be any subtype of the abstract IfcProperty. Example: (IfcSimpleProperty,
IfcSimplePropertyWithUnit, IfcLibraryReference, IfcSimpleProperty)

5.10. IfcRepresentationResource
Guide material for this schema has not yet been developed.

5.11. IfcUtilityResource

5.11.1. Information History
The history of the changes to an instance is recorded in IfcOwnerHistory and IfcAuditTrail. IfcOwnerHistory
records the details of the member of the project team who created the instance and the application that was
used to create it. An IfcAuditTrail is also stored within the IfcOwnerHistor to allow the life cycle of an instance
to be traced.

IfcAuditTrail stores the creation and deletion dates of an instance, the names of the creating and deleting
applications and the creating and deleting users. A list of transactions (currently limited to one – the last
operation) that have been performed on the instance is also stored. The information on deleted instances has
to be maintained to allow the full history of a project to be traced.

5.11.2. Registries
Registries are maintained of the members of the project team and the software applications used in the
project. This allows the full name and details of relevant people and software to be stored in one location.
Shortened identifiers are listed for each person and each application to reduce the storage requirements in
the project database.

5.11.3. Structured Data
IfcTable is used for the storage of tabular data, with a row of headings across the top of the table and then an
unrestricted number of rows of data beneath the headings.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Resource Layer Page 71

Copyright  International Alliance for Interoperability - 1996-1999

5.11.4. Identification

5.11.4.1. Introduction

The IFC Integrated Model provides a rich range of identification possibilities for varying purposes.
Identification is required to manage the process of what and where an object is and to provide some terminal
information concerning status so that users and software applications know with which object they are
dealing.

5.11.4.2. Scope

This part of the Industry Foundation Class Specifications specifies the use of the independent resources
necessary for the scope and information requirements for the exchange and sharing of object identification
information between application systems. Such information will be used at all stages of the life-cycle of a
building

The following are within the scope of this part of the specifications:

• The provision of an identification to an object which allows it to be consistently understood as the same
object irrespective of the systems which may share in its use.

• The provision of an identification to an object which allows it to be identified in terms of its physical
existence in reality (that is, an identification which remains with the physical object wherever it moves).

• The provision of an identification to an object which allows it to be identified in terms of its logical
existence at a location in space (that is, an identification which remains with the place at which a
physical object is located irrespective of the physical object located at that place).

• The provision of an identification to an object which allows the identification of the software application
which created it.

• The provision of date identification which allows both the creation date and the deletion date of the
object to be identified.

The following are outside of the scope of this part of the specifications:

• The provision of any specific identification which may be applied to many instances of the same type of
object other than as may be provided for by the logical identification facility.

• Status identification other than terminal status designated by creation and deletion.

5.11.4.3. Background

Every object must have an identification. This is an inviolable rule of the IFC Integrated Model. Identification
allows the progress of an object to be traced in various ways. Tracing may be for many purposes. Depending
on the purpose, a particular form of identification may be mandatory or optional.

Each object must have a unique identifier. This remains with it as an invariant property and allows it to be
recognized across different systems which may impose their own internal identifications as well. The unique
identifier is absolutely necessary for shared data use and also for the possible development of incremental
data exchange using exchange files. Without such an identifier, it would not be possible to recognize
individual objects across exchanges.

Each object may potentially have a physical identifier. This is data which is normally associated with a
physical product and which again is expected to remain with that physical item throughout its usage. It is the
equivalent to a serial number on the nameplate of a mechanical or electrical device.

Note that the physical identifier is associated with the physical item which is not the same thing as an
instance of an entity. It is possible for a physical item to be replaced by a different physical item but for it to
remain the same instance. The proposed ISO 10303-221 demonstrates this principle in its discussion of
pumps.

The provision is also made for objects to have logical identifiers, a relationship of zero, one or many being
allowed. A logical identifier is required to have both a logical_id_value and may optionally be given a
logical_id_purpose which determines its purpose.

IFC Release 2.0 Volume 2 - IFC Object Model for AEC Projects
Page 72 Guide to the Resource Layer

Copyright  International Alliance for Interoperability - 1996-1999

A logical identifier is not required to be unique whereas both the unique identifier and the physical identifier
are. By not requiring that the logical identifier is uniquely associated with an instance of an object, it is
possible to use it in a flexible way. For instance, it might be used for asset identification where a number of
instances of a physical product form a single asset. At the same time, a different logical identifier might be
used for scheduling purposes, for example, identifying that all light fittings with a given identification are of the
same type.

Each object is required to have an application identifier which specifically identifies the software application
which created it. This is accompanied by an object creation date which indicates the date on which the object
was first instantiated and a deletion date which indicates the time at which that particular instantiation is no
longer required. Note that adding a deletion date does not cause the instantiation to be removed; it marks it
for removal at such time as the database containing it is 'cleaned up'. The provision of deletion date is useful
in the construction phase of a project in providing an audit trail for additions and deletions which can then be
costed in conjunction with the Cost model.

5.11.4.4. References

ISO 10303-WD106 (version S511);, Industrial automation systems and integration - Product data
representation and exchange - Part 106: Building Construction Core Model

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Core Layer Page 73

Copyright  International Alliance for Interoperability - 1996-1999

6. Guide to the Core Layer

6.1. IfcKernel

6.1.1. IFC Properties and Property Sets
When you look at the IFC Object Model, what you see is a set of well defined ways of breaking down
information into logical groups (the classes) and the structure of information that define the state of an
instance of that class (the objects). The information structures provide a formal specification of attributes that
belong to classes, define how data exchange and sharing using ISO 10303 parts 21 and 22 will be achieved
and enable the specification of software interfaces using the Object Management Group’s Interface Definition
Language,

However, at any given time, the model is not complete. There are many types of information that users might
want to exchange that are not currently included within the IFC Object Model.

Additionally, the inclusion of classes of information beyond a certain level could cause the formally specified
model to grow to such an extent that it could become difficult to manage and implement.

For many classes that exist within the model, it is possible to define ‘Types’ of an element. By defining these
Types, it is possible to create standardized ways of describing information without the need for the formally
specified part of the model to grow.

Frequently, there is a need to extend the attributes that are attached to an individual object or group of
objects. Yet it may not be necessary to extend the attributes for every object within the same class. Using the
same capabilities as for Types of an element, it is possible to define such sets of attributes and associate
them with individual objects.

This is done using the Property Definition model. This allows classes and their attributes to be defined and
attached to objects and relationships as objects when needed and not before.

Formally, the Property Definition model provides a meta-model of how to define such classes and attributes
(a meta-model is a model that tells you how to develop a model). These classes are termed Dynamic classes
(as opposed to the Static classes defined in the formal model) and extend occurrences of the static classes
via predefined relationships at ‘run-time’ (that is, when you are actually working with them).

One motivation for defining a Type of an element is to establish a standard that will be used many times in a
project. In these cases, a standard Type is established through the definition of a set of properties that are
constant for all occurrences of that Type in the model. That is, there will be a single record for the dynamic
class and its attributes in an exchange file.

Another motivation for defining a Type of an element is to establish a use or purpose for the element that
requires a standard set of properties be defined for each occurrence. In these cases, this standard set of
properties will be determined by the Type, but values for these Properties will vary for each occurrence of the
element.

Thus property definitions can be either:
• Type defined and shared among multiple occurrences of an element, or
• Type defined but specific for a single occurrences of an element, or
• Non type defined but within IFC specifications and assigned to objects, or
• Extension definitions by end users that are not within IFC specifications.

The following figure gives an overview of the different usage of properties in the IFC Object Model.

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 74 Guide to the Core Layer

Copyright  International Alliance for Interoperability - 1996-1999

Typed Object
(IfcObject)

Attribute/Relationship-A
Attribute/Relationship-B
Attribute/Relationship-C

...
TypeDefinitions

...

Typed Property Assignment
(IfcRelAssignsTypedProperties)
TypedClass (name)
IsShared (false= occurrence)
IsShared (true= shared)

Typed Properties
(IfcPropertySet)
Property-1 (Ref)
Property-2 (Ref)

Non-Typed Properties
(IfcPropertySet)
Property-1 (Ref)
Property-2 (Ref)

Extension Properties
(IfcExtensionPropertySet)
Property-1 (Ref)
Property-2 (Ref)

Property Assignment
(IfcRelAssignsProperties)
IsShared (false= occurrence)
IsShared (true= shared)

Non-Typed Object
(IfcObject)

Attribute/Relationship-A
Attribute/Relationship-B
Attribute/Relationship-C

...

The remainder of this section looks at the Property Definition model and describes, on a class by class basis,
how it operates.

Note that the first part of the Property Definition model is defined within the IfcKernel schema. This part deals
with the structuring and assignment of properties. The second part of the Property Definition model is defined
within the IfcPropertyResource schema and this deals with the various types of property that can be defined.

1.1.1.1. Properties at the Highest Level of the IFC Model

The fundamental class in the IFC Object Model is the IfcRoot class. Every class in the model inherits basic
attributes from this class (except for the classes in the Resource layer which are independent). Therefore,
every object possesses the attributes of ifcRoot. These attributes include a unique identifier that remains with
the object throughout its existence and an owner history that identifies when it was created and who by and
who is its current owner.

Therefore, every property definition has an identifier and a history.

There are three classes defined as subtypes of IfcRoot and these are the fundamental structuring classes
within the IFC Object Model.

(ABS)IfcRoot

(ABS)IfcObject (ABS)IfcPropertyDefinition (ABS)IfcRelationship

IfcPropertySet IfcRelAssignsProperties

1

1

BOOLEAN

1

BOOLEAN

RelatedIsDependent

RelatingIsDependent

.

.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Core Layer Page 75

Copyright  International Alliance for Interoperability - 1996-1999

1. IfcObject - Provides the basis for all classes that are statically defined within the IFC Object Model.
That is, all attributes for the class are defined explicitly within the model and are visible in the formal
EXPRESS code.

2. IfcPropertyDefinition - Provide the basis for all classes that are dynamically defined within the IFC
Object Model. That is, all attributes for the class are defined implicitly within the model and are not
visible in the formal EXPRESS code.

3. IfcRelationship - Provides a means of relating objects to objects or property definitions to objects by
means of various predefined types of relationships such as grouping, nesting, assembly etc. This
class has two attributes that are of type Boolean (that is, they can only have the value TRUE or
FALSE). These attributes identify whether the class that has the ‘Relating’ attribute depends for its
existence on the class that has the ‘Related’ attribute or vice versa. In practice, only one of these
attributes can have the value TRUE; the other attribute has the value FALSE by definition.

In the case of an IfcPropertyDefinition, the attribute ‘RelatingIsDependent’ must have the value TRUE
because the existence of the property definition in association with an object is dependent on the existence of
the object to which it is to be related.

1.1.1.2. Extending Objects

The purpose of the Property Definition model is to provide means of extending the information available about
objects. This could be any type of object (class). The means of relating an IfcPropertyDefinition to an object is
via the IfcRelAssignsProperties class which is one of the predefined types of relationships within the IFC
Object Model. As the name implies, it has the single purpose of associating properties with objects.

Although the relationship identifies that a property definition is associated with an object, the
IfcPropertyDefinition class is an abstract supertype which means that it is never used in itself. It is objects of
the IfcPropertySet subtype that are actually used.

IfcObject IfcPropertyDefinition

Static Model Extension Model

IfcRelAssignsProperties
RelatingPropertyDefinitionRelatiedObjects L[1:?]

.

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 76 Guide to the Core Layer

Copyright  International Alliance for Interoperability - 1996-1999

Consider that there is a Property Definition P that is to be related to objects O1, O2 and O3 using relationship
object R such that:

• P is related to O1 by R
• P is related to O2 by R
• P is related to O3 by R

1.1.1.3. Property Set

The IfcPropertySet class is the operative
subtype of the IfcPropertyDefinition. It is the
IfcPropertySet that appears in an exchange file and not the IfcPropertyDefinition.

An IfcPropertySet is a container that holds collections (or lists) of properties.

The fundamental aspect of the IfcPropertySet is that it contains a list of properties. It must contain at least
one property and may contain as many as are necessary. Each property in the property set must be unique.

Since a property may be simple, the property set may define zero or many attributes such as AirFlowRate or
ResistanceToFlow.

Because a property may be an object reference, the property set may define zero or many references
pointing to an object defined in the static part of the IFC Object Model. For instance, if the installation cost of
a centrifugal fan needs to be known as part of the property set, a reference to an IfcCost object defined in the
IfcCostResource schema would be used.

Because a property may be a property list, the property set of current interest may contain references to zero
or many lists of properties (which in turn may reference other property lists). This allows for nesting of
properties, which provides an extremely powerful capability for dynamically extending the information content
linked to an IFC object.

 Type Relationships

The IfcRelAssignsTypedProperties class is a special type of the IfcRelAssignsProperties class. It enables a
property set to be ‘type defined’ and then related to an IfcObject that has a special ‘type’ attribute.

Type definition enables dynamic or runtime definition of objects. Such type definitions enable:

1. Relating of an object Type, for which a set of properties is defined that are attached at runtime. This
is done though relating one or more IfcPropertySets.

For instance, there may be a class called IfcFan within the static model but the different types of fan
that may exist (single stage axial, multi-stage axial, centrifugal, propellor etc.) are not in the static
model. These are declared as types of the IfcFan through a type relationship attached to the IfcFan
class. Each type of fan that could be defined in IFC is included in an enumeration of fan types. The
"GenericType" attribute on IfcFan is of this data type. Therefore, an IfcFan's Type is setting this
GenericType attribute (selecting from the enumeration of Fan types).

2. Sharing a standard set of property values defined in a publicly accessible IfcPropertySet across
multiple occurrences of that object type.

For instance, a standard range of properties with known values might be defined for the maintenance
of centrifugal fans. These properties will be applied to every centrifugal fan and do not have to be
copied to very instance of that Type of object.

3. Defining different property values within a private copy of the IfcPropertySet for each instance of that
object type.

P

O1

O3

O2RRelating
Properties

To
Object

To
Object

To
Object

.

.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Core Layer Page 77

Copyright  International Alliance for Interoperability - 1996-1999

For instance, all centrifugal fans deliver a volume of air against a known resistance to airflow.
Although these properties are assigned to every centrifugal fan, the values given to them differ for
every instance.

An object that can have a related type defined property set has a type attribute which is always an
enumeration list with the name xxxTypeEnum. The values contained in the enumeration list indicate all of the
typed classes that can be related to the object. This is reflected by the ‘TypedClass’ attribute of the
IfcRelAssignsTypedProperties class which has a matching value to one of the items in the enumeration list.

The model allows for several type relationships for a single object. This is achieved by using the inverse SET
[1:?] aggregation from the IfcObject to the IfcRelAssignsProperties class.

A major advantage of using a typed property definition is that the Type can be changed (since the Type is
referenced). It can be changed at runtime whenever is the user considers it necessary or appropriate. This
offers the possibility that the object can evolve throughout its lifecycle, changing the attached properties
(growing or shrinking them) to reflect its current state.

In the property definition example shown above, the property definition (as a property set) is shared amongst
several objects by the relationship object. Equally, it could be applied to a single object. The context of
whether or not it is shared is identified in the IfcRelAssignsProperties class by the attribute IsShared. This is a
BOOLEAN value (TRUE/FALSE) whose value is derived by context. If there is only one related object, the
value is FALSE. If more than one related object exists, then the value is TRUE.

Property sets may be defined from different domain/application points of view. The DomainView attribute
defines the domain view for which a property set is assigned to an object. For instance, some attributes of a
centrifugal fan might need to be seen by a building services engineer whilst others might need to be seen by
a maintenance contractor (as part of an FM requirement). These would be defined as separate property sets,
each being assigned to the object with the value of the domain view attribute being specified as
‘BuildingServices’ or ‘FacilitiesManagement’.

The TypedClass attribute gives the name of the class within the static part of the IFC Object Model being
typed. In the example identified above, the typed class attribute would be given the value IfcFan to indicate
that it is this class within the IFC Object Model to which the property definition belongs.

The Name attribute gives the name of the type being defined. In the example identified above, the name
attribute would be given the value ‘CentrifugalFan’. Note that this value MUST match the GenericType
attribute of the IfcFan object being typed.

 Extension Properties

An IfcExtensionPropertySet allows for the definition of a set of properties that are not specifically tied to an
object by a type definition and that are not published as part of the IFC specifications. Such properties may be
defined and then attached to any appropriate object via the property assignment relationship object.

IfcRelAssignsProperties

IfcObject

IfcPropertyDefinitionBOOLEAN

STRING

IfcRelAssignsTypedProperties

STRING

STRING

(DER)IsShared

DomainView

1

Name

TypedClass

RelatingPropertyDefinition

(INV) DefinitionOf

RelatedObjects L[1:?]

(INV) IsDefinedBy S[1:?]

.

.

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 78 Guide to the Core Layer

Copyright  International Alliance for Interoperability - 1996-1999

Where an extension property set is defined from a published source, the DefinitionSource attribute enables
the identification of that source.

Extension property sets could be particularly valuable for projects that wish to extend the range of objects and
attributes within the IFC Object Model for particular reasons. In this case, the definition source attribute may
be used as a pointer to the project participant responsible for defining the extension property set.

Use of extension property sets in a local, regional or project specific way is a powerful addition to the IFC
Object Model capability. However, because the schema of the property set is not declared within the model or
as part of the IFC published specifications, their use in this context does require that a convention be adopted
that is known to all participants that are likely to receive such information.

In many ways, this might be considered analogous to the use of layers and the definition of layer conventions
in CAD systems. However, it does require more precision than a layer convention which only identifies
groupings of graphical entities; extension property sets can define the characteristics of individual objects.

1.1.1.4. Property

The IfcProperty is the common abstraction for all Properties defined within the IFC Model. Those Properties
can be either simple properties (a single attribute with a single value) either with or without units, references
to objects defined in the static part of the IFC Object Model, lists of properties or references to sets or lists of
properties external to the IFC Model.

Every property must have a Name attribute that identifies it.

It is to be expected that a dictionary of standard IFC properties will be defined progressively as use of the
dynamic part of the IFC Object Model expands. At present, properties are arbitrarily selected and thus there
is a possibility that the same property may occur under different names1.

1.1.1.5. Simple Property

A simple property is a single attribute that has a name -- value pair. The value, in the case of
IfcSimpleProperty, is defined individually for the attribute by an IfcMeasureValue which may exist without
units. The IfcMeasureValue class is defined in the IfcMeasureResource schema.

1.1.1.6. Simple Property With Unit

A simple property with unit is a single attribute that has a name -- value pair. An IfcMeasureValue defines the
units for the value, in the case of IfcSimplePropertyWithUnit, individually for the attribute. This defines the

1 Although this is possible, a part of the integration role of the IAI Specification Task Force is to trap and resolve such
problems. The dictionary will become important when the number of properties grows large.

IfcProperty

IfcSimpleProperty IfcPropertyList

IfcObjectReference IfcLibraryReference

1

STRINGName

IfcSimplePropertyWithUnit IfcEnumeratedProperty

.

.

IfcSimpleProperty IfcMeasureValueValue (from IfcMeasureResource
schema)

.

.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Core Layer Page 79

Copyright  International Alliance for Interoperability - 1996-1999

unit type for the attribute uniquely. The IfcMeasureWithUnit class is defined in the IfcMeasureResource
schema.

1.1.1.7. Property List

A property list provides the means for a property set to contain more than one property. The list can contain
any of the types of property that are defined within the IFC Object Model including other property lists. This
class therefore provides a means of nesting properties through more than one level.

1.1.1.8. Enumerated Property

The enumerated property class provides the means for a list of possible values of the property to be provided

from which only one can be selected at that particular point in time. At a future time, it should be possible to
change the value selected by referencing a different value within the list. This is done through the use of the
enumeration index that has an integer value whose maximum value is less than or equal to the number of
values in the list.

 IfcEnumeration
The IfcEnumeration class holds the list of values into which the enumeration index points. Additionally, the
enumeration has a name by which it can be identified and that identifies it so that it can be defined as part of
the IFC specifications.

For example, an IfcEnumeration might have the name ‘BladeCurvature’ from which the configuration of the
impeller blades in a centrifugal fan will be selected. It might have the values (‘Forward’, ‘Backward’, ‘Radial’,
‘Other’.). The selection made might be backward curved blading in which case the enumeration index would
point to the second item in the list. At some point in the future, blade curvature might be changed to radial
(i.e. no curvature of the blade) because it offers a better performace for the required duty. In this case, the
enumeration index would be changed to point to the third item on the list.

IfcSimplePropertyWithUnit IfcMeasureWithUnitValue (from IfcMeasureResource
schema)

.

.

IfcPropertyListIfcProperty
HasProperties L[Min:Max]

(INV) PartOfPropertyList S[0:1]

INTEGER

INTEGER

INTEGER

UserMin

(DER)Min

Max

.

.

IfcEnumeratedProperty

IfcEnumeration

EnumerationReference

INTEGER
EnumerationIndex

STRING

STRING

Name

EnumerationValues L[1:?]

.

.

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 80 Guide to the Core Layer

Copyright  International Alliance for Interoperability - 1996-1999

1.1.1.9. Object Reference

An object reference enables reference to objects whose structure is defined by the static part of the IFC
Object Model. Specific types of object may be referenced according to their identity within an exchange file
(shown by the object types from the static part of the IFC Object Model below). Alternatively, the object
reference may be by a globally unique identifier. This means that the reference can only ever be to that one
object.

1.1.1.10. Library Reference

The objective of the Library Reference is to enable an organization that provides information to make it
available according to the structure of a property set2 defined as part of the IFC Object Model. Providing that
this is the case and providing that this information is accessible to both the sender and receiver of an IFC
based information stream, then the property set can be referenced by a location (that might be a URL of
another form of location address).

2 This is a first stage in developing the capability to fully access information libraries that are accessible to multiple
users. The objective is to lessen the amount of information needing to be exchanged because it is as available to the
receiver as to the sender.
At this stage of development however, it is recommended that the use of the Library Reference Property is limited to
property sets that do not use nesting or object references i.e. they contain only simple properties or property lists.

IfcObjectReference

IfcGloballyUniqueId

ObjectReference

(from
IfcUtilityResource

schema)

IfcObjectReferenceSelect

IfcMaterialSelect

IfcDateTimeSelect

IfcClassification

IfcActorSelect

IfcCost

IfcDocumentReference

(from
IfcCostResource

schema)

(from
IfcDocumentResource

schema)

(from
IfcActorResource

schema)

(from
IfcClassificationResoure

schema)

(from
IfcDateTime

schema)

(from
IfcMaterialResource

schema)

.

.

IfcLibraryReference

ReferencedItem

STRING

IfcLibrary
ReferencedLibrary

IfcCalendarDate IfcOrganization

(from IfcDateTime
schema)

(from IfcActor
schema)

VersionDate Publisher

STRING

STRING

STRING
Version

Name

Location

.

.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Core Layer Page 81

Copyright  International Alliance for Interoperability - 1996-1999

A library reference contains a pointer to the external library that contains the information to be referenced
through the ReferencedLibrary attribute.

The ReferencedItem attribute identifies the particular item within the Library that contains the information to
be referenced. In this sense, it may be considered as the key to obtaining the information at a time when it
needs to be exported into the actual IFC compliant format.

 IfcLibrary
The IfcLibrary class enables identification of the actual external library that is to be referenced via an
occurrence of the IfcLibraryReference class. A given library may be referenced by many occurrences of a
library reference.

Name is the name by which the library is normally known.

The Version attribute identifies the version of the library that is referenced. Although optional, this attribute is
important. Information within a library may be subject to continuous updating so that, after the reference is
made to a referenced item in one version of the library, it may be updated in a later version. The version
attribute may be used to identify whether the reference is to the current library or a previous version.

Each version has a VersionDate that identifies the date on which the current version of the library was issued.
This attribute may also be used to ensure that references are to the current version of the library. The
attribute type is a calendar date that is defined within the IfcDateTime schema.

The Location attribute identifies the place at which the library can be found. This is, effectively, a fully qualified
address. In the case of a library that is accessed via the World Wide Web, it is the URL of the library.

A library has an organization who acts as the Publisher. Definition of organization is given in the IfcActor
schema.

 Converting a Library Reference to a Property Set
It may become necessary to embed the information contained within the external source into the project
model. This requires that the property set be read into the project model from the external source and
converted into the appropriate IfcProperty subtype (e.g. simple property or property list).

 Referencing Multiple Libraries
There will be times during the development of the AEC/FM process for a particular project when the
performance information associated with an object will be known but that the particular technical solution to
be adopted has not yet been decided on. There may be several technical solution possibilities, each of which
could be satisfactory. In this case, it might be appropriate to store all of the library references from which a
technical solution might be selected and to assign these to the object.

This can be done using a property list in which all of the properties contained in the list are library references.

Alternatively, a property set could be specified for support of library references that contained a property list
that, in turn, contained the library references. This has the added value that it could be shared amongst many
instances of a class.

6.2. IfcControlExtension

6.2.1. Performance Objectives
Engineers, contractors, and building owners all are concerned that the building design, construction, and
operation meets specific functional requirements. These requirements, or Performance Objectives, typically
are qualitative in nature and exist in many abstract forms. For example, a Performance Objective might be
that the occupied spaces in a building must be ‘comfortable’ and have an adequate lighting level to support
the tasks planned for the space. Instances of the IfcObjective class are used to catalogue the Performance
Objectives that apply to the project. Performance Objectives can be combined using logical operations to
form complex interrelated Objectives through the use of instances of the IfcRelAggregatesConstraints class.

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 82 Guide to the Core Layer

Copyright  International Alliance for Interoperability - 1996-1999

Performance Objectives come into existence from many sources (e.g., the building owner, site conditions,
local utility incentives, etc.), and many decisions are made during the design, construction, and operation of a
building in an attempt at meeting these objectives. In many cases, specific building elements or components
are designed, specified or installed so that these Performance Objectives can be realized. It is essential that
a relationship between these Performance Objectives and specific building elements and components are
identified and maintained so that their design rationale is available to downstream participants. These
relationships between IfcObjectives and IfcObjects can be captured through the use of
IfcRelRelatesConstraints.

6.2.2. Performance Metrics
To satisfy these Performance Objectives, a set of measurable, quantitative target values must be established
as discrete Performance Metrics. For example, the occupied space should be conditioned to maintain a
temperature of 75°F. Similarly, a Performance Metric target value for the lighting level should be a minimum
of 50 foot-candles at the work surface. Performance Metric target values are captured in instances of the
IfcMetricBenchmark class.

Once these Performance Metric target values have been established, they can be referenced and used for
comparisons during the design, construction and operation of the building. For example, the occupied space
temperature and lighting levels can be measured under different load conditions to verify that the qualitative
Performance Objective has been satisfied. Performance Metrics that seek to satisfy a target value are
captured in instances of the IfcMetric class.

Performance Metrics can also be combined using logical operations to form complex interrelated
Performance Metrics through the use of instances of the IfcRelAggregatesConstraints class.

The Performance Metric can be a single data value (e.g., 75°F), a table (e.g., data points representing an
equipment performance curve), a time series (e.g., temporal state points such as hourly room temperatures
over a three day period) or an abstract representation notation (e.g., a formula which defines the theoretical
performance curve of a piece of equipment).

6.3. IfcModelingAidExtension
This schema provides a number of object types that aid the end user in defining a project model, particularly
the physical design model. Most of these enable design grids and reference geometry objects - that allow
constraint of geometric placement of physical object in the model.

6.3.1. Design Grids
IFC supports modeling any number of design grids (architectural, structural, ceiling, site, etc.). These grids
can be 2D or 3D (by defining more than one grid level). The primary purpose of such grids is to allow
alignment (and offset) of building model objects relative to grid objects. Placement relative to the grid can be
a very powerful modeling technique because changes to the design grid can 'drive' updated placements for
all aligned objects. Example: structural columns aligned to the structural grid. Beams connect the columns
to form the structural frame. Adjustments to the design grid can thereby drive updated placement for all
aligned and connected objects in the structural frame.

IfcDesignGrid
Defines the purpose and placement for a grid. One or more grid levels belong to this grid and reference it.

• GridPurpose:STRING - defines the purpose for this grid. Examples: "Structural Grid"
• LocalPlacement:IfcLocalPlacement - defines the 3D location and orientation for this grid (e.g. the grid

origin). Examples: see diagrams in the reference documentation.
• (INV) HasGridLevels:SET [1:?] OF IfcGridLevel - one or more grid level objects that compose this grid.

IfcGridLevel
Defines one 2D level of a grid. Contained axes can be lines or curves, but must be co-planar.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Core Layer Page 83

Copyright  International Alliance for Interoperability - 1996-1999

• PartOfDesignGrid:IfcDesignGrid - The grid for which this object defines one 2D level. Examples: see
diagrams in the reference documentation.

• GridLevelName:STRING - name for this grid level. Examples: "Floor 15".
• GridLevelheight:IfcLengthMeasure - vertical displacement of this level, relative to the design grid

"LocalPlacement." Note: this can be a negative value. Example: -3 M.
• (INV) HasGridAxes:SET [1:?] OF IfcGridAxis - one or more grid axis objects that compose this grid

level.

IfcGridAxis
Defines one grid axis. May be a line, curve or combination.

• PartOfGridLevel:IfcGridLevel - the grid level for which this object defines one axis. Examples: see
diagrams in the reference documentation.

• AxisTag:STRING - tag (or name) associated with this axis. Normally this string is printed inside a 'grid
bubble' at the one or both ends of the axis in plan drawings. Examples: "A", "3", "B", "12".

• AxisCurve:IfcBoundedCurve - the geometry entity that defines this axis. Examples: see diagrams in
the reference documentation.

• SameSense:BOOLEAN - determines if the axis is to adopt the same or opposite 'sense' as the
AxisCurve. Examples: TRUE.

• (INV) AlignedGridIntersections:SET [0:?] OF IfcGridIntersection - one or more grid intersection objects
that are aligned to this grid axis.

IfcGridIntersection
Defines an intersection of two or more grid axes within the same grid level.

• AlignedWithAxes:SET [2:?] OF IfcGridAxis - the grid axes to which this intersection object is aligned.
Examples: see diagrams in the reference documentation.

• IntersectionPoint:IfcCartesianPoint - the geometry entity that defines this intersection. Examples: see
diagrams in the reference documentation.

6.3.2. Reference Geometry objects
This collection of objects allows the same type of placement aid as design grids, but independent of a design
grid. Examples: window placement relative to a reference curve (line) in the development of fenestration
patterns in elevation.

IfcReferencePoint
A 2D or 3D point object that can be referenced in the local placement of other objects..

• ReferencePoint:IfcCartesianPoint - the geometry entity that defines this reference point. Examples:
see diagrams in the reference documentation.

IfcReferenceCurve
A 2D or 3D curve object that can be referenced in the local placement of other objects..

• ReferenceCurve:IfcBoundedCurve - the geometry entity that defines this reference curve. Examples:
see diagrams in the reference documentation.

IfcReferenceSurface
A 3D surface object that can be referenced in the local placement of other objects..

• ReferenceSurface:IfcSurface - the geometry entity that defines this reference surface. Examples: see
diagrams in the reference documentation.

6.3.3. Placement Constraints
This collection objects allow the end user to constrain the placement of objects geometrically.

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 84 Guide to the Core Layer

Copyright  International Alliance for Interoperability - 1996-1999

IfcPlacementConstraint
An abstract supertype for geometric placement constraints. This release only includes a single subtype -
which allows placement constraint relative to intersections (normally grid intersections) - see below. Further
subtypes, for placement relative to curves and surfaces are anticipated in future releases of IFC.

IfcConstraintRelIntersection
Defines fixed offsets from grid axes. This placement constraint is typical for the Japan region.

• RefPointAt:IfcReferencePointSelect - reference to the intersection, relative this placement is
constrained. This is normally a grid intersection, but may also be a reference point. Examples: see
diagrams in the reference documentation.

• OffsetFromCurves:LIST [0:3] OF IfcReferenceCurveSelect - reference to the curves that form this
intersection. Normally, these are grid axes.

• OffsetDistances:LIST [0:3] OF IfclengthMeasure - Offsets from the curves. Note these offsets are
index aligned. That is, offset [1] is from curve [1], etc.

IfcConstrainedPlacement
Defines a constrained placement for one or both endpoints on a 'path' based object (e.g. a wall)

• PathEndPointsConstaint:LIST [1:2] OF IfcPlacementConstraint. Examples: see diagrams in the
reference documentation.

6.3.4. Light Sources
Light source objects have been introduced in this release to support 3D model image rendering. Two objects
are included. The first defines the lights source itself. The second defines the distribution of light from this
light source.

IfcLightSource
A source of light.

• SpectralPowerDistribution:LIST [1:?] OF IfcMeasureWithUnit - a list of power measures relative to a
spectral range of light - output by this light source. Examples: see diagrams in the reference
documentation.

• PhotometricOutputDistribution:LIST [1:?] OF IfcPhotometricOutputSpace - a list of photometric output
space objects - one for each defined intensity level (determined by the end user or application).

IfcPhotometricOutputSpace
The space (and distribution) through which light is cast by an associated light source.

• OutputSpace:IfcSolidModel - solid model of the 3D space through which a particular intensity of light is
cast. Examples: see diagrams in the reference documentation.

• OutputIntensity:IfcLuminousIntensityMeasure - the light intensity cast into the space modeled above.

6.4. IfcProcessExtension
The models in the IfcProcessExtension schema allow for the capture of information concerning the work and
construction resource uses in the process required in order to create a product. The schema also contains
classes that represent work plans, work schedules and schedule elements. Relationships of these objects
are also captured.

The schedule information identifies the time that a work task or a work plan may be scheduled to take to
complete.

6.4.1. Work Plans
Any collection of IfcWorkTask instances makes up a plan, represented by the entity IfcWorkPlan. Tasks can
be organized in different ways to make up different IfcWorkPlan instances. For example, tasks may be

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Core Layer Page 85

Copyright  International Alliance for Interoperability - 1996-1999

organized into a nested hierarchy according to the type of work required to define a plan that supports cost
estimating, then the same tasks can be organized into another nested hierarchy according to work locations,
possibly with additional work tasks added to expand certain details, to define a plan that supports work
scheduling.

6.4.2. Work Schedules
Time scheduling information can be assigned to work plans and work tasks by associating them with related
work scheduling objects. Specifically, an instance of the entity IfcWorkScheduleElement, which holds time
scheduling information such as start dates, end dates, float times, etc, can be associated with an
IfcWorkTask instance to represent all the date and duration information for the work task (i.e, the combination
of an IfcWorkTask and associated IfcWorkScheduleElement provides the equivalent of a traditional
scheduling activity). All IfcWorkScheduleElement instances for a work schedule are grouped into an
IfcWorkSchedule instance. One or more IfcWorkSchedule instances can be associated with any
IfcWorkPlan. Thus, the related instances of IfcWorkPlan and IfcWorkSchedule comprise a subset of basic
planning documents for a project.

6.4.3. Process Nesting
Work tasks can represent a process at any level of detail, from broad project phases to very detailed tasks.
All levels have the same data structure rather than defining different entities for different levels of activities.
For example, an overall project, its development phases, work packages, activities, work tasks, and
operations can all be represented as instances of IfcWorkTask. A key requirement for the estimating and
scheduling integration process is the nesting capability of work tasks. That is, a work task can be broken
down into sub-tasks, but it still remains the same work task itself. In the IFCs, the entity
IfcRelNestsProcesses is used to establish the nesting relationship between work tasks.

6.4.4. Process Sequence
The sequence of processes is defined as an objectified relationship between IfcProcess instances, as
represented by the entity IfcRelSequence. This entity establishes the link between a successor and a
predecessor process, providing a time lag and sequence type (e.g., start-to-start or start-to-finish sequence,
etc.).

6.4.5. Linkages with Products
One of the central relationships in modeling construction processes is the association between processes
and the products upon which they operate. The IFC approach to this is to use an objectified relationship
entity named IfcRelProcessesProducts between IfcProduct and IfcProcess indicating the operation type such
as install, transfer, operation on, construct, remove, erect, and so on.

6.4.6. Resource and Process Relationship
Processes use resources. This resource-use relationship is modeled by IfcRelUsesResource as an
objectified entity carrying information such as resource use duration, quantity, waste factor, and costs.

6.5. IfcProductExtension
Guide material for this schema has not yet been developed.

6.6. IfcProjectMgmtExtension
The models in IfcProjectManagementExtension schema are abstract concepts used in project management
processes in the general sense. They represent ways, conventions, methods, functions, and tools of how
project management is generally performed. Most of the concepts in this schema don’t have physical
appearances. These models also support both construction management and facilities management, while
the latter two schemas focus on more specific domain processes.

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 86 Guide to the Core Layer

Copyright  International Alliance for Interoperability - 1996-1999

In IFC R2.0, the IfcProjectManagementExtension schema contains models that represent concepts such as
budgets, cost estimates (or cost schedules), and project orders including change orders, purchase orders,
and work orders.

6.6.1. Object Costs and Cost Context
In IFC R2.0, object costs are handled primarily in the project management extension schema which supports
cost estimating for both construction and facilities management. For cost estimating, different types of costs
are assigned to objects such as work tasks or products. This section explains how the IFCs currently handle
costs.

Costs assigned to objects can only provide meaningful information if the context of the cost values is known.
For example, information about whether the unit price of a work task includes material purchases,
transportation, material use wastes, equipment uses (operational or rental costs), labor costs, taxes, general
contractor mark-up, etc. must be provided along with the numerical cost value. The IFC entity
IfcCostElement addresses this by providing cost information, relating to the object being costed, and relating
to a cost schedule document (IfcCostSchedule) that describes the context of a list of cost elements.
IfcCostSchedule can be used to represent any form of cost list, such as an estimate, a budget, or a unit price
table. An IfcCostElement instance can be associated with the objects being costed (e.g, a product, a
resource, a process, etc.), through the objectified relationship IfcRelCostsObjects. An IfcCostElement can
also be used to group related sub-costs using an IfcRelNestsCostElements relationship.

6.6.2. Project Orders
In IFC R2.0, concepts such as work orders, purchase orders and change orders created during a
construction project or a facilities management process are captured in the project management extension
schema.

These concepts are modeled as objects where the actual documents or computer files that holds the
information about the objects can be referenced. Also, since they are modeled as objects, it is possible that
these concepts can be associated with other related things or concepts. For example, a change order can be
associated with a cost estimate and a work plan so that the system can retrieve not only the information
about the change order itself but also the estimated cost and proposed work plan for doing the change.
Similarly, a work order can be associated with the building elements such as a piece of equipment that
receives maintenance referred by the work order. With all these associations, integration of different
applications involved in the processes of both creation and utilization of the work orders for the maintenance
can be achieved.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Interoperability Layer Page 87

Copyright  International Alliance for Interoperability - 1996-1999

7. Guide to the Interoperability Layer

7.1. IfcSharedBldgElements
Guide material for this schema has not yet been developed.

7.2. IfcSharedBldgServiceElements
The IfcSharedBldgServiceElements schema captures common concepts that are applicable to building
services: heating, ventilating and air conditioning (HVAC) systems involved in the movement of air and
hydronics for space conditioning, plumbing systems for sanitary and waste systems, electrical systems and
building automation control systems. Since many aspects of these systems must be interoperable with other
building components (e.g., wall elements, structural elements, etc.), they exist within the interoperability layer
so that they may be shared by both inter and intra building services domains.

In Release 2.0 of the IFC model, this schema has been significantly extended to incorporate distribution
systems. Although the design of the IfcSharedBldgServiceElement concepts for distribution systems are
intended to be scalable for many different types of distribution systems, the domain requirements for this
release of IFC focus specifically on pipe and duct distribution systems.

Engineers responsible for the design of duct and piping systems may be consulted during the building
conceptual stage. However, the major design effort occurs after the architect has substantially completed the
building drawings. The design process includes both the schematic and detailed description of duct and
piping components. These components include sections of duct and pipe, fittings, accessories such as
dampers, valves, and terminals. This process also includes the connection of these components to
equipment such as fans and pumps. Classes for equipment were defined in IFC Version 1.x, and are not
elaborated in this release of the IFC model.

7.2.1. Distribution Elements
Distribution Elements are used to convey or distribute energy or matter in and around a building. There are
two subtypes of Distribution Elements in this release of the IFC model: Flow Elements and Control Elements.

7.2.1.1. Flow Elements

Flow elements are the discrete components that are used to convey or distribute energy or matter. Current
definitions of Flow Elements in this release of IFC’s include:

§ Plumbing fixtures as defined in the IfcPlumbingFixture class
§ Electrical fixtures as defined in the IfcElectricalFixture class
§ Flow equipment (e.g., fans, pumps, etc.) as defined in the IfcFlowEquipment class
§ Flow segments (e.g., pipe segments or duct segments) as defined in the IfcFlowSegment class
§ Flow fittings (e.g., elbows, crosses, tees, wyes, etc.) as defined in the IfcFlowFitting class
§ Flow terminals (e.g., air terminals, etc.) as defined in the IfcFlowTerminal class
§ Flow controllers (e.g., dampers, valves, etc.) as defined in the IfcFlowController class

Instances of these classes are specialized using type definitions with generic property sets containing
common information applicable for an international audience. It should be noted that these property set type
definitions are limited in scope for this release. Further specialization of these types is anticipated in future
releases of the IFC model.

7.2.1.2. Control Elements

Control Elements are themselves Distribution Elements which are used to impart some level of control on a
Distribution Element. Examples of Control Elements are dampers or valves, which may have some form of

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 88 Guide to the Interoperability Layer

Copyright  International Alliance for Interoperability - 1996-1999

actuation for imparting mechanical control. Control Elements are further elaborated in the IfcHvacDomain
schema.

7.2.2. Connectivity
A key feature of Distribution Elements is the connectivity of components to form networks. Distribution
Elements can be connected together in two ways: topologically and physically. Topological connectivity can
be established by utilizing the topological representation defined in the IfcTopologicalRepresentationItem
class. Use of these concepts is identical to those found in common directed graphs, and are inherited in all
Distribution Elements.

Physical connectivity is established by defining Ports using instances of the IfcDistributionPortGeometry
class. These instances are then related to instances of IfcFlowDistributionElement using an
IfcRelConnectsPorts instance. Consequently, the port can be defined with its unique placement and geometry
and are therefore independent from the underlying Distribution Element. This allows any number of ports to
be defined for a Distribution Element, each with their own ability to connect to other Distribution Elements.

7.2.3. Discrete Elements
Discrete Elements are those things that are discretely interconnected to Distribution Elements. Examples of
discrete elements are insulation around ducts or pipes, supports used to suspend ducts or pipes from
structural elements, etc. Through the use of the IfcRelAttachesElements, Discrete Elements can be related to
Distribution Elements. In this release of the IFC model, only a limited set of Discrete Elements are defined
(insulation). However, this concept will be further evolved in future releases of the model.

7.2.4. Equipment
There are two types of Equipment defined in this release of the IFC model: Stand-Alone Equipment and Flow
Equipment. Stand-Alone Equipment does not participate in a distribution system (e.g., Window Washing
Equipment) and is manifested through instances of the IfcEquipment class. Contrarily, Flow Equipment
typically does participate in a distribution system, although it is not mandatory that it do so. Examples of Flow
Equipment are concepts such as pumps, fans, package units, etc. Flow Equipment is manifested through
instances of the IfcFlowEquipment class.

Equipment class definitions rely heavily on property set definitions which define type. Furthermore, to create
complex Equipment concepts (e.g., Chiller, Boiler, etc.), it is necessary to aggregate additional property sets
that contain related concepts (e.g., Tube Bundles, Motors, etc.). It is envisioned that future releases of the
IFC model will promote some of these property sets to class definitions to reduce the current property set
nesting requirements.

7.2.5. Design Criteria
Design Criteria are parameters that are used to define constraints on the design of a system. For example, a
duct design criteria may include the need to use only rectangular ductwork with internally lined insulation.
These concepts are captured in various property sets that should be attached to the instance of the IfcSystem
which defines the system under design.

7.3. IfcSharedSpatialElements
Guide material for this schema has not yet been developed.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Domain/Application Models Layer Page 89

Copyright  International Alliance for Interoperability - 1996-1999

8. Guide to the Domain/Application Models Layer

8.1. IfcArchitectureDomain
This schema defines object that are unique to the architecture domain. Obviously, architects also use many
of the objects defined in all of the schemas in the Resource, Core and Interoperability layers of the model.

8.1.1. Architectural Programs / Client Briefing

IfcSpaceProgram
Defines what is called an architectural program in the US and client brief in Europe - essentially, requirements
for a space object.

• PredefinedType:IfcSpaceProgramTypeEnum - the range of possible space program types - for which
property sets are defined. The appropriate property set will be related to this object through the
IfcRelAssignsProperties relationship object . Example: OccupiedSpace

• SpaceProgramName:STRING - programatic (or client brief) name for the associated space. Example:
"Reception"

• (INV) HasAdjacencyReqsTo:SET [0:?] OF IfcRelAdjacencyReq - set of requirement weightings (1 to
256) for how close this space should be to another space. Example: 10.

• (INV) HasAdjacencyReqsFrom:SET [0:?] OF IfcRelAdjacencyReq - set of requirement weightings (1 to
256) for how close this space should be to another space. Example: 10.

IfcSpaceProgramGroup
Defines a program (or client brief) for a group of spaces (see also IfcSpaceProgram).

• GroupRole:STRING - the role of the associated programatic group in the client organization.
Examples: "Accounting department"

• GroupAssignment:IfcActorSelect - The person or organization to whom this group of spaces is
assigned. Examples: IfcOrganization object that defines the accounting department.

• RequiredGroupArea:IfcAreaMeasure - Total area required by this program group (client group).
Examples: 100 M sq.

8.1.2. Ramps and Stairs

IfcRamp
An assembly of IfcRampFlight, IfcLanding and IfcRailing objects. Together, this building element assembly
vertically connects zero or more (generally two or more) levels of slab objects of type floor or landing. These
assembly components are not linked through direct relationships(attributes), but through the objectified
relationship IfcRelAssembles (see IfcKernel).

• PredefinedType:IfcRampTypeEnum - the range of possible ramp types - for which property sets are
defined. The appropriate property set will be related to this object through the IfcRelAssignsProperties
relationship object . Example: Elemented (as in construction type)

• VerticallyConnects:LIST [0:?] OF IfcSlab - the floors or landings which this ramp links. Examples: see
the IfcSlab object in IfcSharedBldgElements.

IfcRampFlight
A sloped building element that vertically connects zero, one or two (generally two) levels of slab objects of
type floor or landing. This is one component in an IfcRamp assembly.

• calcWidth:IfcPositiveLengthMeasure - width dimension for this object -- a value that can be calculated
from the building element geometry, but is included to support applications incapable of this calculation.
Examples: 100 cm

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 90 Guide to the Domain/Application Models Layer

Copyright  International Alliance for Interoperability - 1996-1999

• calcLength:IfcPositiveLengthMeasure - length dimension for this object -- a value that can be calculated
from the building element geometry, but is included to support applications incapable of this calculation.
Examples: 5 M

• calcRise:IfcPositiveLengthMeasure - rise dimension for this object -- a value that can be calculated
from the building element geometry, but is included to support applications incapable of this calculation.
Examples: 50 cm

• calcSlope:IfcPlaneAngleMeasure - length dimension for this object -- a value that can be calculated
from the building element geometry, but is included to support applications incapable of this calculation.
Examples: 2 degrees

IfcLanding
A component in a ramp or stair. A horizontal building element designed to support human occupants,
vertically connected to one or more ramp or stair flights.

• calcHeadroom: IfcPositiveLengthMeasure - vertical clearance (above) for human occupants -- a value
that can be calculated from the building element geometry, but is included to support applications
incapable of this calculation. Examples: 2.5 M

• calcWidth:IfcPositiveLengthMeasure - width dimension for this object -- a value that can be calculated
from the building element geometry, but is included to support applications incapable of this calculation.
Examples: 150 cm

• calcLength:IfcPositiveLengthMeasure - length dimension for this object -- a value that can be calculated
from the building element geometry, but is included to support applications incapable of this calculation.
Examples: 2 M

IfcStair
An assembly of IfcStairFlight, IfcLanding and IfcRailing objects. Together, this building element assembly
vertically connects zero or more (generally two or more) levels of slab objects of type floor or landing. These
assembly components are not linked through direct relationships(attributes), but through the objectified
relationship IfcRelAssembles (see IfcKernel).

• PredefinedType:IfcStairTypeEnum - the range of possible stair types - for which property sets are
defined. The appropriate property set will be related to this object through the IfcRelAssignsProperties
relationship object . Example: FireStair.

• VerticallyConnects:LIST [0:?] OF IfcSlab - the floors or landings which this stair links. Examples: see
the IfcSlab object in IfcSharedBldgElements.

IfcStairFlight
An inclined building element that vertically connects zero, one or two (generally two) levels of slab objects of
type floor or landing. This is one component in an IfcStair assembly.

• StepTreadMaterial:IfcMaterial - building material applied to the tread of the stair steps. Examples: "tile"
(see IfcMaterial)

• StepNosingMaterial:IfcMaterial - building material applied to the nosing of each stair step. Examples:
"metal" (see IfcMaterial)

• calcFlightHeadroom: IfcPositiveLengthMeasure - vertical clearance (above) for human occupants -- a
value that can be calculated from the building element geometry, but is included to support applications
incapable of this calculation. Examples: 2.5 M

• calcTotalFlightRise: IfcPositiveLengthMeasure - total vertical 'rise', from base of flight to top stair tread -
- a value that can be calculated from the building element geometry, but is included to support
applications incapable of this calculation. Examples: 2.5 M

• calcTotalFlightRun: IfcPositiveLengthMeasure - total horizontal 'travel', from first tread nosing to back of
final tread -- a value that can be calculated from the building element geometry, but is included to
support applications incapable of this calculation. Examples: 2.5 M

• calcStepRise: IfcPositiveLengthMeasure - vertical 'rise' for each stair step (note: equal steps is
assumed) -- a value that can be calculated from the building element geometry, but is included to
support applications incapable of this calculation. Examples: 2.5 M

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Domain/Application Models Layer Page 91

Copyright  International Alliance for Interoperability - 1996-1999

• calcStepTread: IfcPositiveLengthMeasure - horizontal 'run' for each stair step, from tread nosing to
base of the next step -- a value that can be calculated from the building element geometry, but is
included to support applications incapable of this calculation. Examples: 2.5 M

IfcRailing
Frame assembly adjacent to human circulation spaces and at some space boundaries where in lieu of walls
or to compliment walls. Designed to aid humans, either as an optional physical support, or to prevent injury
by falling.

• PredefinedType:IfcRailingTypeEnum - the range of possible railing types - for which property sets are
defined. The appropriate property set will be related to this object through the IfcRelAssignsProperties
relationship object . Example: Guardrail.

• RailingHardware:LIST [0:?] OF IfcBuiltInAccessory - List of references to accessory/mounting hardware
for this railing. Examples: "Wall bracket", "Base Plate"

8.1.3. Cabinets, Counters, Shelves and Accessories

IfcBuiltInAccessory
Building hardware or attached occupant accessory - attached to one or more building elements.

• PredefinedType:IfcBuiltInAccessoryTypeEnum - the range of possible accessory types - for which
property sets are defined. The appropriate property set will be related to this object through the
IfcRelAssignsProperties relationship object . Example: DoorOrWindowHardware.

• MountingType:STRING - describes the method for mounting or attaching this accessory. Examples:
Wall mount

• calcMountingHeight: IfcPositiveLengthMeasure - vertical height above the adjacent floor (slab) -- a
value that can be calculated from the building element geometry, but is included to support applications
incapable of this calculation. Examples: 1.2 M

IfcCabinet
Storage enclosure, normally attached to a wall and/or floor. Typically includes doors and internal shelves..

• PredefinedType:IfcCabinetTypeEnum - the range of possible cabinet types - for which property sets are
defined. The appropriate property set will be related to this object through the IfcRelAssignsProperties
relationship object . Example: Storage.

• CabinetHardware:LIST [0:?] OF IfcBuiltInAccessory - List of references to accessory hardware for this
cabinet. Examples: "Handle", "Hinge", "Drawer glide"

IfcCounterOrShelf
Horizontal work or storage surface attached to a wall or covering the top of a cabinet.

• PredefinedType:IfcCounterOrShelfTypeEnum - the range of possible counter/shelf types - for which
property sets are defined. The appropriate property set will be related to this object through the
IfcRelAssignsProperties relationship object . Example: CounterTop.

• CounterOrShelfHardware:LIST [0:?] OF IfcBuiltInAccessory - List of references to accessory hardware
for this counter/shelf. Examples: "Support bracket"

8.1.4. Visual Screening

IfcVisualScreen
Physical barrier to block visual connection. An element or assembly whose purpose is to "screen" an area
from human view.

• PredefinedType:IfcVisualScreenTypeEnum - the range of possible visual screen types - for which
property sets are defined. The appropriate property set will be related to this object through the
IfcRelAssignsProperties relationship object . Example: VisualScreenPanel.

IFC Release 2.0 Volume 2 - IFC Object Model Guide
Page 92 Guide to the Domain/Application Models Layer

Copyright  International Alliance for Interoperability - 1996-1999

8.2. IfcConstructionMgmtDomain
The IfcConstructionManagement Schema contains defined types and classes that capture concepts and data
requirements for construction management processes. They, together with models defined in
IfcProcessExtension and IfcProjectMangementExtension, provide a set of model elements that support
typical construction management applications and their integration.

In R2.0, most of the classes included in this schema are used to represent different types of construction
resources that can support both cost estimating and work planning, and their integration.

8.2.1. Construction Resources
Construction resources are things that are used to carry out construction processes. The entity IfcResource
can be used to represent either types of resources or individual occurrences of resources needed to aid in a
construction process. The IFCs currently support five different resource types: subcontractor, construction
equipment, construction material, labor, crew, and product resources. A crew is a collection of resources
(typically a collection of labor resources with some associated equipment and materials). A product resource
is used in the situation where a product that results from a work task is used as a resource in another
process.

Although it is common to model things such as construction equipment, materials, and labor as resources, it
presents a problem in that all of these are things that might also play different roles on a project. For
example, a crane might be represented as a temporary constructed product, materials might be represented
as design properties or as the basic components in a materials management application, and labor might be
represented as part of the organizational information for a project. Further, the characterization of these
things as resources, products, etc, can be very dependent upon the perspective of the user of the
information. Generally, things should be modeled as "what they are" rather than as "a role they play". Yet the
concept of "resources" represents a role that certain things play on a construction projects, and it is difficult to
design representational structures that satisfy all these different perspectives. Thus, a subtle but important
change being proposed for the IFC Release 2.0 is that IfcResource is interpreted as representing “the use of
a thing in the role of a construction resource,” rather than representing the thing itself. If only basic resource
information such as the names, quantities, and prices is of interest to users of a project model, then
IfcResource objects alone are sufficient to represent the information. However, if further information is
required about the things that are being used as resources, then the IfcResource instances can be
associated to other instances that represent those things (i.e., IfcProductRes and IfcMaterialRes can be
associated to IfcProduct objects, IfcLaborRes can be associated with IfcActor instances, etc).

8.3. IfcFacilitiesMgmtDomain
The IfcFacilitiesMgmt Schema defines basic concepts in the facilities management (FM) domain. This
schema, along with IfcProcessExtension and IfcProjectManagementExtension, provide a set of models that
can be used by typical facilities management applications.

In R2.0, these models can be used to support FM processes such as furniture and equipment scheduling,
occupancy and space planning, move management, and workstation design and layout, etc. When the
objects defined in these schemas are generated by these processes, their values can be made available
based on IFC data structure for other FM processes to use.

8.3.1. Furniture
In IFC R2.0, two fundamental types of furniture are captured: standalone furniture such as tables, desks,
chairs or file cabinets, and systems furniture (i.e. modular furniture) such as work stations and workstation
groups. A workstation is a standalone office cube, while a workstation group is a set of office cubes
assembled together through vertical panels. In IFCs, both a workstation and a workstation group are
captured by the class IfcWorkstation, which is modeled as a space unit with characteristics of a furniture
piece. In IFCs, a furniture piece can also refer to a furniture model defined by the furniture manufacturer.

Volume 2 - IFC Object Model Guide IFC Release 2.0
Guide to the Domain/Application Models Layer Page 93

Copyright  International Alliance for Interoperability - 1996-1999

8.3.2. Occupancy Planning or Move Management
An occupancy plan is also understood as a move plan in facilities management. An occupancy schedule is a
time schedule for the process for occupants to move from spaces to spaces. In IFC R2.0, an occupancy
schedule contains a list of schedule item which in turn is associated with an occupancy task providing time
information such as start time, finish time and constraint. An occupancy schedule and its schedule items are
also associated with the spaces where the occupants move out or move in. Sequential logic of the
occupancy tasks (i.e. IfcOccupancyTaks, a subtype of IfcProcess) included in the occupancy plan can also
be specified using IfcRelSequence relationship between IfcProcess.

8.3.3. Inventory
An inventory concept is captured as a collection of things. The things are collected as an inventory because
the total value, total items, and the item ownership as a collection are important and meaningful for business
processes and decisions. In IFC R2.0, two types of inventory are modeled: space inventory and asset
inventory. Items that are considered as assets in IFCs are furniture, fixture, and equipment. For an
enterprise, the facilities manager can either create a space inventory, an asset inventory, or both in its
computer system depending on his/her facilities management needs, while associations between the spaces
and assets can be established in either case.

8.4. IfcHvacDomain
The IfcHvacDomain schema captures common concepts that are applicable specifically to heating, ventilating
and air conditioning (HVAC) systems. The focus for concepts in this schema are for allowing interoperability
within the HVAC domain.

8.4.1. Flow Controllers
Flow Controllers are specialized in the IfcHvacDomain schema to specifically address the needs of duct and
pipe distribution systems. This schema currently elaborates Flow Controllers with definitions for valves
(IfcValve), terminal or mixing boxes (IfcTerminalBox), and dampers (IfcDamper).

8.4.2. Control Elements
Control Elements are specialized in the IfcHvacDomain schema to specifically address the building
automation and control needs for duct and pipe distribution systems. This schema currently elaborates
Control Elements with definitions for actuators (IfcActuator), controllers (IfcController), and sensors
(IfcSensor). Property sets are also provided for capturing binary, multi-state and analog input and output data
values for Control Elements.

